Summary: | Abstract Background Only very recently, studies have shown that it is possible to reduce the metabolic rate of unloaded and loaded walking using robotic ankle exoskeletons. Some studies obtained this result by means of high positive work assistance while others combined negative and positive work assistance. There is no consensus about the isolated contribution of negative work assistance. Therefore, the aim of the present study is to examine the effect of varying negative work assistance at the ankle joint while maintaining a fixed level of positive work assistance with a multi-articular soft exosuit. Methods We tested eight participants during walking at 1.5 ms−1 with a 23-kg backpack. Participants wore a version of the exosuit that assisted plantarflexion via Bowden cables tethered to an off-board actuation platform. In four active conditions we provided different rates of exosuit bilateral ankle negative work assistance ranging from 0.015 to 0.037 W kg−1 and a fixed rate of positive work assistance of 0.19 W kg−1. Results All active conditions significantly reduced metabolic rate by 11 to 15% compared to a reference condition, where the participants wore the exosuit but no assistance was provided. We found no significant effect of negative work assistance. However, there was a trend (p = .08) toward greater reduction in metabolic rate with increasing negative work assistance, which could be explained by observed reductions in biological ankle and hip joint power and moment. Conclusions The non-significant trend of increasing negative work assistance with increasing reductions in metabolic rate motivates the value in further studies on the relative effects of negative and positive work assistance. There may be benefit in varying negative work over a greater range or in isolation from positive work assistance.
|