Caerulomycin and collismycin antibiotics share a trans-acting flavoprotein-dependent assembly line for 2,2’-bipyridine formation
Caerulomycins and collismycins are two types of 2,2’-bipyridine natural products that are biosynthesized via a hybrid NRPS-PKS pathway, but the details of their biosynthesis were unknown. Here, the authors elucidate their biosynthetic pathways, validate the generality of 2,2’-bipyridine formation, a...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-05-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-23475-4 |
Summary: | Caerulomycins and collismycins are two types of 2,2’-bipyridine natural products that are biosynthesized via a hybrid NRPS-PKS pathway, but the details of their biosynthesis were unknown. Here, the authors elucidate their biosynthetic pathways, validate the generality of 2,2’-bipyridine formation, and clarify the process for 2,2’-bipyridine furcation. |
---|---|
ISSN: | 2041-1723 |