Special Types of Locally Conformal Closed G<sub>2</sub>-Structures

Motivated by known results in locally conformal symplectic geometry, we study different classes of G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inlin...

Full description

Bibliographic Details
Main Authors: Giovanni Bazzoni, Alberto Raffero
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/7/4/90
id doaj-fce5574f8f3e48449dc8d31a0ea82a5f
record_format Article
spelling doaj-fce5574f8f3e48449dc8d31a0ea82a5f2020-11-24T20:51:34ZengMDPI AGAxioms2075-16802018-11-01749010.3390/axioms7040090axioms7040090Special Types of Locally Conformal Closed G<sub>2</sub>-StructuresGiovanni Bazzoni0Alberto Raffero1Departamento de Álgebra, Geometría y Topología, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, SpainDipartimento di Matematica “G. Peano”, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, ItalyMotivated by known results in locally conformal symplectic geometry, we study different classes of G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures.https://www.mdpi.com/2075-1680/7/4/90locally conformal closed G<sub>2</sub>-structurecoupled SU(3)-structure
collection DOAJ
language English
format Article
sources DOAJ
author Giovanni Bazzoni
Alberto Raffero
spellingShingle Giovanni Bazzoni
Alberto Raffero
Special Types of Locally Conformal Closed G<sub>2</sub>-Structures
Axioms
locally conformal closed G<sub>2</sub>-structure
coupled SU(3)-structure
author_facet Giovanni Bazzoni
Alberto Raffero
author_sort Giovanni Bazzoni
title Special Types of Locally Conformal Closed G<sub>2</sub>-Structures
title_short Special Types of Locally Conformal Closed G<sub>2</sub>-Structures
title_full Special Types of Locally Conformal Closed G<sub>2</sub>-Structures
title_fullStr Special Types of Locally Conformal Closed G<sub>2</sub>-Structures
title_full_unstemmed Special Types of Locally Conformal Closed G<sub>2</sub>-Structures
title_sort special types of locally conformal closed g<sub>2</sub>-structures
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2018-11-01
description Motivated by known results in locally conformal symplectic geometry, we study different classes of G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures.
topic locally conformal closed G<sub>2</sub>-structure
coupled SU(3)-structure
url https://www.mdpi.com/2075-1680/7/4/90
work_keys_str_mv AT giovannibazzoni specialtypesoflocallyconformalclosedgsub2substructures
AT albertoraffero specialtypesoflocallyconformalclosedgsub2substructures
_version_ 1716801744408674304