Special Types of Locally Conformal Closed G<sub>2</sub>-Structures
Motivated by known results in locally conformal symplectic geometry, we study different classes of G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inlin...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/7/4/90 |
id |
doaj-fce5574f8f3e48449dc8d31a0ea82a5f |
---|---|
record_format |
Article |
spelling |
doaj-fce5574f8f3e48449dc8d31a0ea82a5f2020-11-24T20:51:34ZengMDPI AGAxioms2075-16802018-11-01749010.3390/axioms7040090axioms7040090Special Types of Locally Conformal Closed G<sub>2</sub>-StructuresGiovanni Bazzoni0Alberto Raffero1Departamento de Álgebra, Geometría y Topología, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, SpainDipartimento di Matematica “G. Peano”, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, ItalyMotivated by known results in locally conformal symplectic geometry, we study different classes of G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures.https://www.mdpi.com/2075-1680/7/4/90locally conformal closed G<sub>2</sub>-structurecoupled SU(3)-structure |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Giovanni Bazzoni Alberto Raffero |
spellingShingle |
Giovanni Bazzoni Alberto Raffero Special Types of Locally Conformal Closed G<sub>2</sub>-Structures Axioms locally conformal closed G<sub>2</sub>-structure coupled SU(3)-structure |
author_facet |
Giovanni Bazzoni Alberto Raffero |
author_sort |
Giovanni Bazzoni |
title |
Special Types of Locally Conformal Closed G<sub>2</sub>-Structures |
title_short |
Special Types of Locally Conformal Closed G<sub>2</sub>-Structures |
title_full |
Special Types of Locally Conformal Closed G<sub>2</sub>-Structures |
title_fullStr |
Special Types of Locally Conformal Closed G<sub>2</sub>-Structures |
title_full_unstemmed |
Special Types of Locally Conformal Closed G<sub>2</sub>-Structures |
title_sort |
special types of locally conformal closed g<sub>2</sub>-structures |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2018-11-01 |
description |
Motivated by known results in locally conformal symplectic geometry, we study different classes of G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures. |
topic |
locally conformal closed G<sub>2</sub>-structure coupled SU(3)-structure |
url |
https://www.mdpi.com/2075-1680/7/4/90 |
work_keys_str_mv |
AT giovannibazzoni specialtypesoflocallyconformalclosedgsub2substructures AT albertoraffero specialtypesoflocallyconformalclosedgsub2substructures |
_version_ |
1716801744408674304 |