Summary: | Motivated by known results in locally conformal symplectic geometry, we study different classes of G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-structures.
|