Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach

Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effe...

Full description

Bibliographic Details
Main Authors: Fei Yuan, You Zhou, Meng Wang, Jing Yang, Kai Wu, Changhong Lu, Xiangyin Kong, Yu-Dong Cai
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Computational and Mathematical Methods in Medicine
Online Access:http://dx.doi.org/10.1155/2015/462363
Description
Summary:Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer.
ISSN:1748-670X
1748-6718