Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies
Extracellular vesicles (EVs) are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs) between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-02-01
|
Series: | Non-Coding RNA |
Subjects: | |
Online Access: | http://www.mdpi.com/2311-553X/3/1/10 |
id |
doaj-fcc384f1fff74f4a91afbdc4fd9400d1 |
---|---|
record_format |
Article |
spelling |
doaj-fcc384f1fff74f4a91afbdc4fd9400d12020-11-24T22:13:25ZengMDPI AGNon-Coding RNA2311-553X2017-02-01311010.3390/ncrna3010010ncrna3010010Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to TherapiesFarah Fatima0Muhammad Nawaz1Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, BrazilDepartment of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, BrazilExtracellular vesicles (EVs) are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs) between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryotes might have evolved novel means of post-transcriptional regulation by trans-locating ncRNAs between cells. EV-mediated transportation of regulatory elements provides a novel source of trans-regulation between cells. In the last decade, studies were mainly focused on microRNAs; however, functions of long ncRNA (lncRNA) have been much less studied. Here, we review the regulatory roles of EV-linked ncRNAs, placing a particular focus on lncRNAs, how they can foster dictated patterns of trans-regulation in recipient cells. This refers to envisaging novel mechanisms of epigenetic regulation, cellular reprogramming and genomic instability elicited in recipient cells, ultimately permitting the generation of cancer initiating cell phenotypes, senescence and resistance to chemotherapies. Conversely, such trans-regulation may introduce RNA interference in recipient cancer cells causing the suppression of oncogenes and anti-apoptotic proteins; thus favoring tumor inhibition. Collectively, understanding these mechanisms could be of great value to EV-based RNA therapeutics achieved through gene manipulation within cancer cells, whereas the ncRNA content of EVs from cancer patients could serve as non-invasive source of diagnostic biomarkers and prognostic indicators in response to therapies.http://www.mdpi.com/2311-553X/3/1/10extracellular vesiclesexRNAlong non-coding RNAstrans-regulationRNA interferencecancer senescencedrug resistanceRNA-based therapeuticsbiomarkers |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Farah Fatima Muhammad Nawaz |
spellingShingle |
Farah Fatima Muhammad Nawaz Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies Non-Coding RNA extracellular vesicles exRNA long non-coding RNAs trans-regulation RNA interference cancer senescence drug resistance RNA-based therapeutics biomarkers |
author_facet |
Farah Fatima Muhammad Nawaz |
author_sort |
Farah Fatima |
title |
Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies |
title_short |
Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies |
title_full |
Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies |
title_fullStr |
Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies |
title_full_unstemmed |
Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies |
title_sort |
vesiculated long non-coding rnas: offshore packages deciphering trans-regulation between cells, cancer progression and resistance to therapies |
publisher |
MDPI AG |
series |
Non-Coding RNA |
issn |
2311-553X |
publishDate |
2017-02-01 |
description |
Extracellular vesicles (EVs) are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs) between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryotes might have evolved novel means of post-transcriptional regulation by trans-locating ncRNAs between cells. EV-mediated transportation of regulatory elements provides a novel source of trans-regulation between cells. In the last decade, studies were mainly focused on microRNAs; however, functions of long ncRNA (lncRNA) have been much less studied. Here, we review the regulatory roles of EV-linked ncRNAs, placing a particular focus on lncRNAs, how they can foster dictated patterns of trans-regulation in recipient cells. This refers to envisaging novel mechanisms of epigenetic regulation, cellular reprogramming and genomic instability elicited in recipient cells, ultimately permitting the generation of cancer initiating cell phenotypes, senescence and resistance to chemotherapies. Conversely, such trans-regulation may introduce RNA interference in recipient cancer cells causing the suppression of oncogenes and anti-apoptotic proteins; thus favoring tumor inhibition. Collectively, understanding these mechanisms could be of great value to EV-based RNA therapeutics achieved through gene manipulation within cancer cells, whereas the ncRNA content of EVs from cancer patients could serve as non-invasive source of diagnostic biomarkers and prognostic indicators in response to therapies. |
topic |
extracellular vesicles exRNA long non-coding RNAs trans-regulation RNA interference cancer senescence drug resistance RNA-based therapeutics biomarkers |
url |
http://www.mdpi.com/2311-553X/3/1/10 |
work_keys_str_mv |
AT farahfatima vesiculatedlongnoncodingrnasoffshorepackagesdecipheringtransregulationbetweencellscancerprogressionandresistancetotherapies AT muhammadnawaz vesiculatedlongnoncodingrnasoffshorepackagesdecipheringtransregulationbetweencellscancerprogressionandresistancetotherapies |
_version_ |
1725801114670989312 |