The RGS gene <it>loco </it>is essential for male reproductive system differentiation in <it>Drosophila melanogaster</it>

<p>Abstract</p> <p>Background</p> <p>The <it>loco </it>gene encodes several different isoforms of a regulator of G-protein signalling. These different isoforms of LOCO are part of a pathway enabling cells to respond to external signals. LOCO is known to be r...

Full description

Bibliographic Details
Main Authors: Yu Fengwei, Colombini Paolo, Trimbuch Thorsten, Rothwell Kathleen, Pathirana Stephen, McGurk Leeanne, Chia William, Bownes Mary
Format: Article
Language:English
Published: BMC 2008-04-01
Series:BMC Developmental Biology
Online Access:http://www.biomedcentral.com/1471-213X/8/37
Description
Summary:<p>Abstract</p> <p>Background</p> <p>The <it>loco </it>gene encodes several different isoforms of a regulator of G-protein signalling. These different isoforms of LOCO are part of a pathway enabling cells to respond to external signals. LOCO is known to be required at various developmental stages including neuroblast division, glial cell formation and oogenesis. Less is known about LOCO and its involvement in male development therefore to gain further insight into the role of LOCO in development we carried out a genetic screen and analysed males with reduced fertility.</p> <p>Results</p> <p>We identified a number of lethal <it>loco </it>mutants and four semi-lethal lines, which generate males with reduced fertility. We have identified a fifth <it>loco </it>transcript and show that it is differentially expressed in developing pupae. We have characterised the expression pattern of all <it>loco </it>transcripts during pupal development in the adult testes, both in wild type and <it>loco </it>mutant strains. In addition we also show that there are various G-protein α subunits expressed in the testis all of which may be potential binding partners of LOCO.</p> <p>Conclusion</p> <p>We propose that the male sterility in the new <it>loco </it>mutants result from a failure of accurate morphogenesis of the adult reproductive system during metamorphosis, we propose that this is due to a loss of expression of <it>loco c3</it>. Thus, we conclude that specific isoforms of <it>loco </it>are required for the differentiation of the male gonad and genital disc.</p>
ISSN:1471-213X