Vasculogenic mimicry-associated ultrastructural findings in human and canine inflammatory breast cancer cell lines

Abstract Background Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are the most lethal mammary cancers. An exacerbated angiogenesis and the existence of vasculogenic mimicry (VM) are hallmarks of these tumors. The information regarding VM and ultrastructural char...

Full description

Bibliographic Details
Main Authors: Lucía Barreno, Sara Cáceres, Ángela Alonso-Diez, Ana Vicente-Montaña, María Luisa García, Mónica Clemente, Juan Carlos Illera, Laura Peña
Format: Article
Language:English
Published: BMC 2019-07-01
Series:BMC Cancer
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12885-019-5955-z
Description
Summary:Abstract Background Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are the most lethal mammary cancers. An exacerbated angiogenesis and the existence of vasculogenic mimicry (VM) are hallmarks of these tumors. The information regarding VM and ultrastructural characteristics of mammary cell lines is scant. Methods In this study, IBC cell line SUM149 and IMC cell line IPC-366 in adherent (2D) and non-adherent (3D) (mammospheres, cancer stem cells) conditions were analyzed by transmission and scanning electron microscopy (TEM and SEM, respectively). Results The TEM revealed round to oval shape cells with microvilli on the surface, high numbers of peroxisomes in close apposition to lipid droplets and some extracellular derived vesicles. The TEM and the SEM mammospheres revealed group of cells clumping together with a central lumen (resembling a mammary acini). The cells joint are tight junctions and zonula adherens. By SEM two cell morphologies were observed: spherical and flattened cells. There was evidence endothelial-like cells (ELCs), which is characteristic for this disease, showing several or unique cytoplasmic empty space. ELCs were more frequent in 3D than in 2D culture conditions and contained Weibel-Palade cytoplasmic bodies, which are exclusive structures of endothelial cells. Conclusions Both cell lines, IPC-366 and SUM-149, shared ultrastructural characteristics, further supporting canine IMC as a model for the human disease. To the best of our knowledge, this is the first study that demonstrate the morphological differentiation of cultured cancer stem cells from cancer epithelial cell lines into endothelial-like cells, confirming the vasculogenic mimicry phenomenon from an ultrastructural point of view.
ISSN:1471-2407