Dynamic of Si nanoparticles inside of a quadrupolar trap: Analysis of the angular momentum transfer

We investigate the dynamics of Si spherical nanoparticles for different infrared wavelengths in a system based on two circularly polarized counter-propagating Gaussian beams. Through the analysis of the dipolar and quadrupolar forces, we obtain several conditions under which these nanoparticles desc...

Full description

Bibliographic Details
Main Authors: Luis Carretero, Pablo Acebal, Salvador Blaya, Manuel Pérez-Molina
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Results in Physics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379720319707
Description
Summary:We investigate the dynamics of Si spherical nanoparticles for different infrared wavelengths in a system based on two circularly polarized counter-propagating Gaussian beams. Through the analysis of the dipolar and quadrupolar forces, we obtain several conditions under which these nanoparticles describe different types of attractive or repulsive spirals at focus plane depending on the efficiency of the quadrupole trap obtained. We demonstrate that these spirals are generated by the angular momentum transfer from the electromagnetic field to the particles, and this is mainly due to the interference forces dipole–dipole and quadrupole–dipole. Through the adequate selection of the wavelength, angular momentum transfer can only take place with quadrupolar–dipolar interference forces. We study particle dynamics by solving the deterministic and non-deterministic over-damped Langevin equation.
ISSN:2211-3797