Synthesis and optical properties of Tb-doped pentazinc dimolybdate pentahydrate

Tb3+ doped pentazinc bimolybdate pentahydrate (Zn5Mo2O11·5H2O) was synthesized via the precipitation method. Thermal gravimetric analysis and differential scanning calorimetric analysis indicate that Zn5Mo2O11·5H2O is decomposed into ZnMoO4 at the phase transition temperature 267 °C. The photolumine...

Full description

Bibliographic Details
Main Authors: Bao-gai Zhai, Qing-lan Ma, Long Yang, Yuan Ming Huang
Format: Article
Language:English
Published: Elsevier 2017-01-01
Series:Results in Physics
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379717304205
Description
Summary:Tb3+ doped pentazinc bimolybdate pentahydrate (Zn5Mo2O11·5H2O) was synthesized via the precipitation method. Thermal gravimetric analysis and differential scanning calorimetric analysis indicate that Zn5Mo2O11·5H2O is decomposed into ZnMoO4 at the phase transition temperature 267 °C. The photoluminescence characterization shows that the characteristic emissions of Tb3+ at 488, 544, 586 and 613 nm are superimposed over a broad emission band of Zn5Mo2O11·5H2O. The characteristic emissions of Tb3+ ions get weakened in intensity as the calcination temperature increases from 150 to 267 °C. Our results have demonstrated that Tb3+ can be used as an effective and direct probe in the spectroscopic studies on the phase transition of Zn5Mo2O11·5H2O. Keywords: Pentazinc bimolybdate pentahydrate, Photoluminescence, Phase transition, Dehydration, Calcination
ISSN:2211-3797