3D-Moldability of Veneers Plasticized with Water and Ammonia
The 3D-moldability of veneers, as opposed to the moldability of plastic or other materials, is limited because of the characteristics of wood. Veneers can be modified by physical, chemical, or mechanical treatment. We chose water and ammonia-water solutions. After treatment for an established time,...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2014-12-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_1_866_Fekiac_3D_Moldability_Veneers |
Summary: | The 3D-moldability of veneers, as opposed to the moldability of plastic or other materials, is limited because of the characteristics of wood. Veneers can be modified by physical, chemical, or mechanical treatment. We chose water and ammonia-water solutions. After treatment for an established time, the moldability of veneers was examined. The level of concave deflection of a test piece of punch-molded veneer was assessed. Three sets of test pieces were tested by dipping in cold water (20 °C), hot water (95 °C), or a 25% solution of ammonia, for different durations of time. The results showed that the 3D-moldability of veneers increased by 66 to 119% after plasticization by a 25% solution of ammonia, unlike the unmodified veneers with a moisture content of 7.65%. The increase in moldability was significantly higher in comparison to the veneers modified by dipping in cold water (20 °C) and hot water (95 °C). Futhermore, the relationship between the moisture content of the veneers after their modification/plasticization, the level of concave deflection, and the molding force in relation to the level of concave deflection were examined. |
---|---|
ISSN: | 1930-2126 1930-2126 |