Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion

In this paper, we introduce a new comprehensive subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo&...

Full description

Bibliographic Details
Main Authors: Hari Mohan Srivastava, Ahmad Motamednezhad, Safa Salehian
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/10/1/27
id doaj-fc0c5efd6d6d48e2bf3889220a2b8df7
record_format Article
spelling doaj-fc0c5efd6d6d48e2bf3889220a2b8df72021-02-28T00:03:53ZengMDPI AGAxioms2075-16802021-02-0110272710.3390/axioms10010027Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial ExpansionHari Mohan Srivastava0Ahmad Motamednezhad1Safa Salehian2Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaFaculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box 316-36155, Shahrood, IranDepartment of Mathematics, Gorgan Branch, Islamic Azad University, 517212 Gorgan, IranIn this paper, we introduce a new comprehensive subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of meromorphic bi-univalent functions in the open unit disk <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">U</mi></semantics></math></inline-formula>. We also find the upper bounds for the initial Taylor-Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>0</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>1</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mi>n</mi></msub><mrow><mo>|</mo><mspace width="0.277778em"></mspace><mrow><mo>(</mo><mi>n</mi><mo>≧</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow></semantics></math></inline-formula> for functions in the subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.https://www.mdpi.com/2075-1680/10/1/27analytic functionsunivalent and bi-univalent functionsmeromorphic bi-univalent functionscoefficient estimatesFaber polynomial expansionmeromorphic bi-Bazilevič functions of order β and type μ
collection DOAJ
language English
format Article
sources DOAJ
author Hari Mohan Srivastava
Ahmad Motamednezhad
Safa Salehian
spellingShingle Hari Mohan Srivastava
Ahmad Motamednezhad
Safa Salehian
Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
Axioms
analytic functions
univalent and bi-univalent functions
meromorphic bi-univalent functions
coefficient estimates
Faber polynomial expansion
meromorphic bi-Bazilevič functions of order β and type μ
author_facet Hari Mohan Srivastava
Ahmad Motamednezhad
Safa Salehian
author_sort Hari Mohan Srivastava
title Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
title_short Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
title_full Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
title_fullStr Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
title_full_unstemmed Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
title_sort coefficients of a comprehensive subclass of meromorphic bi-univalent functions associated with the faber polynomial expansion
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2021-02-01
description In this paper, we introduce a new comprehensive subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of meromorphic bi-univalent functions in the open unit disk <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">U</mi></semantics></math></inline-formula>. We also find the upper bounds for the initial Taylor-Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>0</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>1</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mi>n</mi></msub><mrow><mo>|</mo><mspace width="0.277778em"></mspace><mrow><mo>(</mo><mi>n</mi><mo>≧</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow></semantics></math></inline-formula> for functions in the subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.
topic analytic functions
univalent and bi-univalent functions
meromorphic bi-univalent functions
coefficient estimates
Faber polynomial expansion
meromorphic bi-Bazilevič functions of order β and type μ
url https://www.mdpi.com/2075-1680/10/1/27
work_keys_str_mv AT harimohansrivastava coefficientsofacomprehensivesubclassofmeromorphicbiunivalentfunctionsassociatedwiththefaberpolynomialexpansion
AT ahmadmotamednezhad coefficientsofacomprehensivesubclassofmeromorphicbiunivalentfunctionsassociatedwiththefaberpolynomialexpansion
AT safasalehian coefficientsofacomprehensivesubclassofmeromorphicbiunivalentfunctionsassociatedwiththefaberpolynomialexpansion
_version_ 1724247755802542080