Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
In this paper, we introduce a new comprehensive subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo&...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/10/1/27 |
id |
doaj-fc0c5efd6d6d48e2bf3889220a2b8df7 |
---|---|
record_format |
Article |
spelling |
doaj-fc0c5efd6d6d48e2bf3889220a2b8df72021-02-28T00:03:53ZengMDPI AGAxioms2075-16802021-02-0110272710.3390/axioms10010027Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial ExpansionHari Mohan Srivastava0Ahmad Motamednezhad1Safa Salehian2Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaFaculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box 316-36155, Shahrood, IranDepartment of Mathematics, Gorgan Branch, Islamic Azad University, 517212 Gorgan, IranIn this paper, we introduce a new comprehensive subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of meromorphic bi-univalent functions in the open unit disk <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">U</mi></semantics></math></inline-formula>. We also find the upper bounds for the initial Taylor-Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>0</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>1</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mi>n</mi></msub><mrow><mo>|</mo><mspace width="0.277778em"></mspace><mrow><mo>(</mo><mi>n</mi><mo>≧</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow></semantics></math></inline-formula> for functions in the subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.https://www.mdpi.com/2075-1680/10/1/27analytic functionsunivalent and bi-univalent functionsmeromorphic bi-univalent functionscoefficient estimatesFaber polynomial expansionmeromorphic bi-Bazilevič functions of order β and type μ |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hari Mohan Srivastava Ahmad Motamednezhad Safa Salehian |
spellingShingle |
Hari Mohan Srivastava Ahmad Motamednezhad Safa Salehian Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion Axioms analytic functions univalent and bi-univalent functions meromorphic bi-univalent functions coefficient estimates Faber polynomial expansion meromorphic bi-Bazilevič functions of order β and type μ |
author_facet |
Hari Mohan Srivastava Ahmad Motamednezhad Safa Salehian |
author_sort |
Hari Mohan Srivastava |
title |
Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion |
title_short |
Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion |
title_full |
Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion |
title_fullStr |
Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion |
title_full_unstemmed |
Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion |
title_sort |
coefficients of a comprehensive subclass of meromorphic bi-univalent functions associated with the faber polynomial expansion |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2021-02-01 |
description |
In this paper, we introduce a new comprehensive subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of meromorphic bi-univalent functions in the open unit disk <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">U</mi></semantics></math></inline-formula>. We also find the upper bounds for the initial Taylor-Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>0</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>1</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>b</mi><mi>n</mi></msub><mrow><mo>|</mo><mspace width="0.277778em"></mspace><mrow><mo>(</mo><mi>n</mi><mo>≧</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow></semantics></math></inline-formula> for functions in the subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Σ</mi><mi>B</mi></msub><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject. |
topic |
analytic functions univalent and bi-univalent functions meromorphic bi-univalent functions coefficient estimates Faber polynomial expansion meromorphic bi-Bazilevič functions of order β and type μ |
url |
https://www.mdpi.com/2075-1680/10/1/27 |
work_keys_str_mv |
AT harimohansrivastava coefficientsofacomprehensivesubclassofmeromorphicbiunivalentfunctionsassociatedwiththefaberpolynomialexpansion AT ahmadmotamednezhad coefficientsofacomprehensivesubclassofmeromorphicbiunivalentfunctionsassociatedwiththefaberpolynomialexpansion AT safasalehian coefficientsofacomprehensivesubclassofmeromorphicbiunivalentfunctionsassociatedwiththefaberpolynomialexpansion |
_version_ |
1724247755802542080 |