A Novel Ratiometric Probe Based on Nitrogen-Doped Carbon Dots and Rhodamine B Isothiocyanate for Detection of Fe3+ in Aqueous Solution

A ratiometric probe for determining ferric ions (Fe3+) was developed based on nitrogen-doped carbon dots (CDs) and rhodamine B isothiocyanate (RhB), which was then applied to selective detection of Fe3+ in PB buffer solution, lake water, and tap water. In the sensing system, FePO4 particles deposit...

Full description

Bibliographic Details
Main Authors: Lin Liu, Lu Chen, Jiangong Liang, Lingzhi Liu, Heyou Han
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Journal of Analytical Methods in Chemistry
Online Access:http://dx.doi.org/10.1155/2016/4939582
Description
Summary:A ratiometric probe for determining ferric ions (Fe3+) was developed based on nitrogen-doped carbon dots (CDs) and rhodamine B isothiocyanate (RhB), which was then applied to selective detection of Fe3+ in PB buffer solution, lake water, and tap water. In the sensing system, FePO4 particles deposit on the surface of CDs, resulting in larger particles and surface passivation. The fluorescence (FL) intensity and the light scattering (LS) intensity of CDs can be gradually enhanced with the addition of Fe3+, while the FL intensity of RhB remains constant. The ratiometric light intensity of CDs LS and RhB FL was quantitatively in response to Fe3+ concentrations in a dynamic range of 0.01–1.2 μM, with a detection limit as low as 6 nM. Other metal ions, such as Fe2+, Al3+, K+, Ca2+, and Co2+, had no significant interference on the determination of Fe3+. Compared with traditional probes based on single-signal probe for Fe3+ detection, this dual-signal-based ratiometric probe exhibits a more reliable and stable response on target concentration and is characterized by easy operation in a simple fluorescence spectrophotometer.
ISSN:2090-8865
2090-8873