Oscillatory bifurcation problems for ODEs with logarithmic nonlinearity

We study the global structure of the oscillatory perturbed bifurcation problem which comes from the stationary logarithmic Schrödinger equation −u″(t)=λ(log(1+u(t))+sinu(t)),u(t)>0,t∈I≔(−1,1),u(±1)=0,-{u}^{^{\prime\prime} }\left(t)=\lambda (\log \left(1+u\left(t))+\sin u\left(t)),\hspace{1.0em}u\...

Full description

Bibliographic Details
Main Author: Shibata Tetsutaro
Format: Article
Language:English
Published: De Gruyter 2021-07-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2021-0057

Similar Items