EZ-DripLoss Assessment in Chicken Breast Meat Using Different Sample Areas, Fiber Orientation, and Measurement Intervals

Although the EZ-DripLoss method has been performed in numerous studies, there is a deficiency in our knowledge of the EZ-DripLoss method’s suitability for poultry meat analysis. This study aimed to research the effect of different sample areas (10, 20, and 30 mm; <i>n</i> = 240), and fib...

Full description

Bibliographic Details
Main Authors: Ana Kaić, Zlatko Janječić, Andrija Žanetić, Nikolina Kelava Ugarković, Klemen Potočnik
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/11/4/1095
Description
Summary:Although the EZ-DripLoss method has been performed in numerous studies, there is a deficiency in our knowledge of the EZ-DripLoss method’s suitability for poultry meat analysis. This study aimed to research the effect of different sample areas (10, 20, and 30 mm; <i>n</i> = 240), and fiber orientations (vertical vs. horizontal) on the EZ-DripLoss in chicken breast meat measured across a period of five days. The influence of sample area on the EZ-DripLoss of chicken breast meat with respect to the fiber orientation and across the five-day measurement interval was significant between 10 and 30 mm samples, and between 20 and 30 mm samples (<i>p</i> < 0.001). The estimated regression coefficient showed that EZ-DripLoss for the samples with horizontal and vertical fiber direction of 10 and 20 mm, significantly increased by 0.04% per hour, while for the samples with vertical fiber direction whose diameter was 30 mm, it significantly increased by 0.06% per hour, and for the horizontal fiber direction, it significantly increased by 0.07% per hour. The samples with vertical fiber orientation had 0.50% greater EZ-DripLoss compared to the samples with horizontal fiber orientation. EZ-DripLoss evaluation in chicken breast should be performed with a sample core diameter of 20 mm, a vertical fiber orientation, and over the course of longer measurement intervals.
ISSN:2076-2615