The extinction of dengue through natural vulnerability of its vectors.
BACKGROUND: Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2010-01-01
|
Series: | PLoS Neglected Tropical Diseases |
Online Access: | http://europepmc.org/articles/PMC3006136?pdf=render |
id |
doaj-fbd483bbe9844b12aae238e900787fc7 |
---|---|
record_format |
Article |
spelling |
doaj-fbd483bbe9844b12aae238e900787fc72020-11-25T02:02:56ZengPublic Library of Science (PLoS)PLoS Neglected Tropical Diseases1935-27271935-27352010-01-01412e92210.1371/journal.pntd.0000922The extinction of dengue through natural vulnerability of its vectors.Craig R WilliamsChristie A BaderMichael R KearneyScott A RitchieRichard C RussellBACKGROUND: Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. METHODOLOGY/PRINCIPAL FINDINGS: Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. CONCLUSIONS/SIGNIFICANCE: These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies.http://europepmc.org/articles/PMC3006136?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Craig R Williams Christie A Bader Michael R Kearney Scott A Ritchie Richard C Russell |
spellingShingle |
Craig R Williams Christie A Bader Michael R Kearney Scott A Ritchie Richard C Russell The extinction of dengue through natural vulnerability of its vectors. PLoS Neglected Tropical Diseases |
author_facet |
Craig R Williams Christie A Bader Michael R Kearney Scott A Ritchie Richard C Russell |
author_sort |
Craig R Williams |
title |
The extinction of dengue through natural vulnerability of its vectors. |
title_short |
The extinction of dengue through natural vulnerability of its vectors. |
title_full |
The extinction of dengue through natural vulnerability of its vectors. |
title_fullStr |
The extinction of dengue through natural vulnerability of its vectors. |
title_full_unstemmed |
The extinction of dengue through natural vulnerability of its vectors. |
title_sort |
extinction of dengue through natural vulnerability of its vectors. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Neglected Tropical Diseases |
issn |
1935-2727 1935-2735 |
publishDate |
2010-01-01 |
description |
BACKGROUND: Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. METHODOLOGY/PRINCIPAL FINDINGS: Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. CONCLUSIONS/SIGNIFICANCE: These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies. |
url |
http://europepmc.org/articles/PMC3006136?pdf=render |
work_keys_str_mv |
AT craigrwilliams theextinctionofdenguethroughnaturalvulnerabilityofitsvectors AT christieabader theextinctionofdenguethroughnaturalvulnerabilityofitsvectors AT michaelrkearney theextinctionofdenguethroughnaturalvulnerabilityofitsvectors AT scottaritchie theextinctionofdenguethroughnaturalvulnerabilityofitsvectors AT richardcrussell theextinctionofdenguethroughnaturalvulnerabilityofitsvectors AT craigrwilliams extinctionofdenguethroughnaturalvulnerabilityofitsvectors AT christieabader extinctionofdenguethroughnaturalvulnerabilityofitsvectors AT michaelrkearney extinctionofdenguethroughnaturalvulnerabilityofitsvectors AT scottaritchie extinctionofdenguethroughnaturalvulnerabilityofitsvectors AT richardcrussell extinctionofdenguethroughnaturalvulnerabilityofitsvectors |
_version_ |
1724950612646297600 |