Hydrogel based protein biochip for parallel detection of biomarkers for diagnosis of a Systemic Inflammatory Response Syndrome (SIRS) in human serum.

The Systemic Inflammatory Response Syndrome (SIRS), a sepsis related inflammatory state, is a self-defense mechanism against specific and nonspecific stimuli. The six most extensively studied inflammatory biomarkers for the clinical diagnosis of SIRS are interleukin 4 (hIL-4), interleukin 6 (hIL-6),...

Full description

Bibliographic Details
Main Authors: Anne Stumpf, Thomas Brandstetter, Johannes Hübner, Jürgen Rühe
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0225525
Description
Summary:The Systemic Inflammatory Response Syndrome (SIRS), a sepsis related inflammatory state, is a self-defense mechanism against specific and nonspecific stimuli. The six most extensively studied inflammatory biomarkers for the clinical diagnosis of SIRS are interleukin 4 (hIL-4), interleukin 6 (hIL-6), interleukin 10 (hIL-10), tumor necrosis factor alpha (hTNF-α), interferon gamma (hIFN-γ) and procalcitonin (hPCT). These biomarkers are naturally present (but usually only at low concentration) in SIRS infected patients [1, 2] and thus the development of a highly sensitive detection method is of major clinical interest. However, the existing analytical techniques are lacking in required analytical sensitivity and parallel determination of these biomarkers. We developed a fast, easy and cost-efficient protein microarray biochip where the capture molecules are attached on hydrogel spots, enabling SIRS diagnosis by parallel detection of these six clinically relevant biomarkers with a sample volume of 25 μl. With our hydrogel based protein microarray biochip we achieved a limit of detection for hIL-4 of 75.2 pg/ml, for hIL-6 of 45.1 pg/ml, for hIL-10 of 71.5 pg/ml, for hTNF-α of 56.7 pg/ml, for IFN-γ of 46.4 pg/ml and for hPCT of 1.1 ng/ml in spiked human serum demonstrating sufficient sensitivity for clinical usage. Additionally, we demonstrated successful detection of two relevant SIRS biomarkers in clinical patient samples with a turnaround time of the complete analysis from sample-to-answer in less than 200 minutes.
ISSN:1932-6203