A multiplicity result for a class of superquadratic Hamiltonian systems
We establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter $ lambda $, we consider the system $$displaylines{ -Delta v = lambda f(u) quad hbox{in } Omega , cr -Delta u = g(v) quad hbox{in } Om...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2003-02-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2003/15/abstr.html |
id |
doaj-fbc114bcf25b4846a8f40fdb7967ce1d |
---|---|
record_format |
Article |
spelling |
doaj-fbc114bcf25b4846a8f40fdb7967ce1d2020-11-24T22:43:16ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912003-02-01200315114A multiplicity result for a class of superquadratic Hamiltonian systemsJoao Marcos Do OPedro UbillaWe establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter $ lambda $, we consider the system $$displaylines{ -Delta v = lambda f(u) quad hbox{in } Omega , cr -Delta u = g(v) quad hbox{in } Omega , cr u = v=0 quad hbox{on } partial Omega , }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^N$ with $Ngeq 1$. One solution is obtained applying Ambrosetti and Rabinowitz's classical Mountain Pass Theorem, and the other solution by a local minimization. end{abstract} http://ejde.math.txstate.edu/Volumes/2003/15/abstr.htmlElliptic systemsminimax techniquesMountain Pass TheoremEkeland's variational principle |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Joao Marcos Do O Pedro Ubilla |
spellingShingle |
Joao Marcos Do O Pedro Ubilla A multiplicity result for a class of superquadratic Hamiltonian systems Electronic Journal of Differential Equations Elliptic systems minimax techniques Mountain Pass Theorem Ekeland's variational principle |
author_facet |
Joao Marcos Do O Pedro Ubilla |
author_sort |
Joao Marcos Do O |
title |
A multiplicity result for a class of superquadratic Hamiltonian systems |
title_short |
A multiplicity result for a class of superquadratic Hamiltonian systems |
title_full |
A multiplicity result for a class of superquadratic Hamiltonian systems |
title_fullStr |
A multiplicity result for a class of superquadratic Hamiltonian systems |
title_full_unstemmed |
A multiplicity result for a class of superquadratic Hamiltonian systems |
title_sort |
multiplicity result for a class of superquadratic hamiltonian systems |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2003-02-01 |
description |
We establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter $ lambda $, we consider the system $$displaylines{ -Delta v = lambda f(u) quad hbox{in } Omega , cr -Delta u = g(v) quad hbox{in } Omega , cr u = v=0 quad hbox{on } partial Omega , }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^N$ with $Ngeq 1$. One solution is obtained applying Ambrosetti and Rabinowitz's classical Mountain Pass Theorem, and the other solution by a local minimization. end{abstract} |
topic |
Elliptic systems minimax techniques Mountain Pass Theorem Ekeland's variational principle |
url |
http://ejde.math.txstate.edu/Volumes/2003/15/abstr.html |
work_keys_str_mv |
AT joaomarcosdoo amultiplicityresultforaclassofsuperquadratichamiltoniansystems AT pedroubilla amultiplicityresultforaclassofsuperquadratichamiltoniansystems AT joaomarcosdoo multiplicityresultforaclassofsuperquadratichamiltoniansystems AT pedroubilla multiplicityresultforaclassofsuperquadratichamiltoniansystems |
_version_ |
1725696678885851136 |