A multiplicity result for a class of superquadratic Hamiltonian systems

We establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter $ lambda $, we consider the system $$displaylines{ -Delta v = lambda f(u) quad hbox{in } Omega , cr -Delta u = g(v) quad hbox{in } Om...

Full description

Bibliographic Details
Main Authors: Joao Marcos Do O, Pedro Ubilla
Format: Article
Language:English
Published: Texas State University 2003-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2003/15/abstr.html
id doaj-fbc114bcf25b4846a8f40fdb7967ce1d
record_format Article
spelling doaj-fbc114bcf25b4846a8f40fdb7967ce1d2020-11-24T22:43:16ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912003-02-01200315114A multiplicity result for a class of superquadratic Hamiltonian systemsJoao Marcos Do OPedro UbillaWe establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter $ lambda $, we consider the system $$displaylines{ -Delta v = lambda f(u) quad hbox{in } Omega , cr -Delta u = g(v) quad hbox{in } Omega , cr u = v=0 quad hbox{on } partial Omega , }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^N$ with $Ngeq 1$. One solution is obtained applying Ambrosetti and Rabinowitz's classical Mountain Pass Theorem, and the other solution by a local minimization. end{abstract} http://ejde.math.txstate.edu/Volumes/2003/15/abstr.htmlElliptic systemsminimax techniquesMountain Pass TheoremEkeland's variational principle
collection DOAJ
language English
format Article
sources DOAJ
author Joao Marcos Do O
Pedro Ubilla
spellingShingle Joao Marcos Do O
Pedro Ubilla
A multiplicity result for a class of superquadratic Hamiltonian systems
Electronic Journal of Differential Equations
Elliptic systems
minimax techniques
Mountain Pass Theorem
Ekeland's variational principle
author_facet Joao Marcos Do O
Pedro Ubilla
author_sort Joao Marcos Do O
title A multiplicity result for a class of superquadratic Hamiltonian systems
title_short A multiplicity result for a class of superquadratic Hamiltonian systems
title_full A multiplicity result for a class of superquadratic Hamiltonian systems
title_fullStr A multiplicity result for a class of superquadratic Hamiltonian systems
title_full_unstemmed A multiplicity result for a class of superquadratic Hamiltonian systems
title_sort multiplicity result for a class of superquadratic hamiltonian systems
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2003-02-01
description We establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter $ lambda $, we consider the system $$displaylines{ -Delta v = lambda f(u) quad hbox{in } Omega , cr -Delta u = g(v) quad hbox{in } Omega , cr u = v=0 quad hbox{on } partial Omega , }$$ where $Omega$ is a smooth bounded domain in $mathbb{R}^N$ with $Ngeq 1$. One solution is obtained applying Ambrosetti and Rabinowitz's classical Mountain Pass Theorem, and the other solution by a local minimization. end{abstract}
topic Elliptic systems
minimax techniques
Mountain Pass Theorem
Ekeland's variational principle
url http://ejde.math.txstate.edu/Volumes/2003/15/abstr.html
work_keys_str_mv AT joaomarcosdoo amultiplicityresultforaclassofsuperquadratichamiltoniansystems
AT pedroubilla amultiplicityresultforaclassofsuperquadratichamiltoniansystems
AT joaomarcosdoo multiplicityresultforaclassofsuperquadratichamiltoniansystems
AT pedroubilla multiplicityresultforaclassofsuperquadratichamiltoniansystems
_version_ 1725696678885851136