Controlled Sputtering Pressure on High-Quality Sb<sub>2</sub>Se<sub>3</sub> Thin Film for Substrate Configurated Solar Cells

Magnetron sputtering has become an effective method in Sb<sub>2</sub>Se<sub>3</sub> thin film photovoltaic. Research found that post-selenization treatments are essential to produce stoichiometric thin films with desired crystallinity and orientation for the sputtered Sb<s...

Full description

Bibliographic Details
Main Authors: Rong Tang, Xingye Chen, Yandi Luo, Zihang Chen, Yike Liu, Yingfen Li, Zhenghua Su, Xianghua Zhang, Ping Fan, Guangxing Liang
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/3/574
Description
Summary:Magnetron sputtering has become an effective method in Sb<sub>2</sub>Se<sub>3</sub> thin film photovoltaic. Research found that post-selenization treatments are essential to produce stoichiometric thin films with desired crystallinity and orientation for the sputtered Sb<sub>2</sub>Se<sub>3</sub>. However, the influence of the sputtering process on Sb<sub>2</sub>Se<sub>3</sub> device performance has rarely been explored. In this work, the working pressure effect was thoroughly studied for the sputtered Sb<sub>2</sub>Se<sub>3</sub> thin film solar cells. High-quality Sb<sub>2</sub>Se<sub>3</sub> thin film was obtained when a bilayer structure was applied by sputtering the film at a high (1.5 Pa) and a low working pressure (1.0 Pa) subsequently. Such bilayer structure was found to be beneficial for both crystallization and preferred orientation of the Sb<sub>2</sub>Se<sub>3</sub> thin film. Lastly, an interesting power conversion efficiency (PCE) of 5.5% was obtained for the champion device.
ISSN:2079-4991