Multidiscipline Topology Optimization of Stiffened Plate/Shell Structures Inspired by Growth Mechanisms of Leaf Veins in Nature
Biological structures with preeminent performance in nature endow inexhaustible inspiration for creative design in engineering. In this paper, based on the observation of the natural morphogenesis of leaf veins, we put forward a simple and practical multidiscipline topology optimization method to pr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2013/653895 |
Summary: | Biological structures with preeminent performance in nature endow inexhaustible inspiration for creative design in engineering. In this paper, based on the observation of the natural morphogenesis of leaf veins, we put forward a simple and practical multidiscipline topology optimization method to produce the stiffener layout for plate/shell structures. This method simulates the emergence of complex branching patterns copying the self-optimization of leaf veins which always try to grow into a configuration with global optimal performances. Unlike the conventional topology optimization methods characterized by “subtraction mode,” the proposed method is based on the “addition mode,” giving great potential for designers to achieve more clear stiffener layout patterns rather than vague material distributions and, consequently, saving computational resources as well as enhancing availability of design outputs. Numerical studies of both static and dynamic problems considered in this paper clearly show the suitability of the proposed method for the optimal design of stiffened plate/shell structures. |
---|---|
ISSN: | 1024-123X 1563-5147 |