Generating high quality libraries for DIA MS with empirically corrected peptide predictions
Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specif...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-03-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-15346-1 |
id |
doaj-fb9023947e6a4fa1a16ec3f069b1e441 |
---|---|
record_format |
Article |
spelling |
doaj-fb9023947e6a4fa1a16ec3f069b1e4412021-05-11T08:41:39ZengNature Publishing GroupNature Communications2041-17232020-03-0111111010.1038/s41467-020-15346-1Generating high quality libraries for DIA MS with empirically corrected peptide predictionsBrian C. Searle0Kristian E. Swearingen1Christopher A. Barnes2Tobias Schmidt3Siegfried Gessulat4Bernhard Küster5Mathias Wilhelm6Institute for Systems BiologyInstitute for Systems BiologyNovo Nordisk Research Center Seattle, Inc.Technical University of MunichTechnical University of MunichTechnical University of MunichTechnical University of MunichData-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specific libraries.https://doi.org/10.1038/s41467-020-15346-1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Brian C. Searle Kristian E. Swearingen Christopher A. Barnes Tobias Schmidt Siegfried Gessulat Bernhard Küster Mathias Wilhelm |
spellingShingle |
Brian C. Searle Kristian E. Swearingen Christopher A. Barnes Tobias Schmidt Siegfried Gessulat Bernhard Küster Mathias Wilhelm Generating high quality libraries for DIA MS with empirically corrected peptide predictions Nature Communications |
author_facet |
Brian C. Searle Kristian E. Swearingen Christopher A. Barnes Tobias Schmidt Siegfried Gessulat Bernhard Küster Mathias Wilhelm |
author_sort |
Brian C. Searle |
title |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_short |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_full |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_fullStr |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_full_unstemmed |
Generating high quality libraries for DIA MS with empirically corrected peptide predictions |
title_sort |
generating high quality libraries for dia ms with empirically corrected peptide predictions |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2020-03-01 |
description |
Data-independent acquisition-mass spectrometry (MS) typically requires many preparatory MS runs to produce experiment-specific spectral libraries. Here, the authors show that empirical correction of in silico predicted spectral libraries enables efficient generation of high-quality experiment-specific libraries. |
url |
https://doi.org/10.1038/s41467-020-15346-1 |
work_keys_str_mv |
AT briancsearle generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT kristianeswearingen generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT christopherabarnes generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT tobiasschmidt generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT siegfriedgessulat generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT bernhardkuster generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions AT mathiaswilhelm generatinghighqualitylibrariesfordiamswithempiricallycorrectedpeptidepredictions |
_version_ |
1721450615342628864 |