Variation in the stearoyl-CoA desaturase gene (<i>SCD</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture

<p>Gene markers have become useful tools for improving animal genetics and breeding since they improve the accuracy of selection for superior breeding stock. In this study, the stearoyl-CoA desaturase (<span class="inline-formula">Δ</span>-9-desaturase) gene (<i>SCD...

Full description

Bibliographic Details
Main Authors: Y. Li, H. Zhou, L. Cheng, J. Zhao, J. Hickford
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Archives Animal Breeding
Online Access:https://aab.copernicus.org/articles/63/355/2020/aab-63-355-2020.pdf
id doaj-fb89198bef92492c85de605933234b7b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Y. Li
H. Zhou
L. Cheng
J. Zhao
J. Hickford
spellingShingle Y. Li
H. Zhou
L. Cheng
J. Zhao
J. Hickford
Variation in the stearoyl-CoA desaturase gene (<i>SCD</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture
Archives Animal Breeding
author_facet Y. Li
H. Zhou
L. Cheng
J. Zhao
J. Hickford
author_sort Y. Li
title Variation in the stearoyl-CoA desaturase gene (<i>SCD</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture
title_short Variation in the stearoyl-CoA desaturase gene (<i>SCD</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture
title_full Variation in the stearoyl-CoA desaturase gene (<i>SCD</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture
title_fullStr Variation in the stearoyl-CoA desaturase gene (<i>SCD</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture
title_full_unstemmed Variation in the stearoyl-CoA desaturase gene (<i>SCD</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture
title_sort variation in the stearoyl-coa desaturase gene (<i>scd</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture
publisher Copernicus Publications
series Archives Animal Breeding
issn 0003-9438
2363-9822
publishDate 2020-11-01
description <p>Gene markers have become useful tools for improving animal genetics and breeding since they improve the accuracy of selection for superior breeding stock. In this study, the stearoyl-CoA desaturase (<span class="inline-formula">Δ</span>-9-desaturase) gene (<i>SCD</i>) was investigated in New Zealand pasture-grazed Holstein–Friesian&thinsp;<span class="inline-formula">×</span>&thinsp;Jersey cows. Three nucleotide substitutions were identified in exon 5 of the gene (c.702A/G, c.762T/C and c.878C/T), and a single nucleotide substitution was identified in intron 5 (c.880<span class="inline-formula">+</span>105A/G). The c.878C/T substitution would, if expressed, result in the amino acid substitution p.A293V. Four nucleotide substitutions (c.*1783A/G, c.*1883C/T, c.*1984G/A and c.*2066T/C/G) were identified in the 3<span class="inline-formula"><sup>′</sup></span>-untranslated region (3<span class="inline-formula"><sup>′</sup></span>-UTR), and these resulted in three nucleotide sequence variants (named <span class="inline-formula"><i>a</i></span>, <span class="inline-formula"><i>b</i></span> and <span class="inline-formula"><i>c</i>)</span>. The sequence that would encode valine (V) at position 293 of <i>SCD</i> was linked to 3<span class="inline-formula"><sup>′</sup></span>-UTR variant <span class="inline-formula"><i>a</i></span>, and the sequence that would encode alanine (A) was linked to variants <span class="inline-formula"><i>b</i></span> and <span class="inline-formula"><i>c</i></span>. The frequency of the genotypes was as follows: <i>VV</i> (equivalent to <i>aa</i>: 15.1&thinsp;%), <i>VA</i> (equivalent to <span class="inline-formula"><i>ab</i>+<i>ac</i></span>: 50.0&thinsp;%) and <i>AA</i> (equivalent to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext mathvariant="italic">bb</mtext><mo>+</mo><mtext mathvariant="italic">cc</mtext><mo>+</mo><mtext mathvariant="italic">bc</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="bb73c420fc528c40fcd87a4c53f6a4ae"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aab-63-355-2020-ie00001.svg" width="61pt" height="10pt" src="aab-63-355-2020-ie00001.png"/></svg:svg></span></span>: 34.9&thinsp;%). The cows with the <span class="inline-formula"><i>V</i></span> variant produced less C10:1, C12:1 and C14:1 fatty acid (FA) but more C10:0, C11:0, C14:0, C16:1 and C18:2 FA than the <span class="inline-formula"><i>A</i></span> variant cows (<span class="inline-formula"><i>P</i>&lt;0.001</span>). Effects of c.*1783A/G and c.*2066T/C/G on milk fat composition were also found for the <i>AA</i> cows. The presence of <span class="inline-formula"><i>c</i></span> was associated with decreased levels of C16:1 (<span class="inline-formula"><i>P</i>&lt;0.001</span>), C17:1 (<span class="inline-formula"><i>P</i>=0.001</span>), C18:2 <i>cis</i>-9, <i>trans</i>-13 (<span class="inline-formula"><i>P</i>=0.045</span>), C18:2 <i>cis</i>-9, <i>trans</i>-12 (<span class="inline-formula"><i>P</i>=0.018</span>) FA and C16:1 FA index (<span class="inline-formula"><i>P</i>&lt;0.001</span>). The presence of <span class="inline-formula"><i>b</i></span> was associated with increased levels of C13:0 <i>iso</i> FAs (<span class="inline-formula"><i>P</i>&lt;0.001</span>), monounsaturated FA (MUFA; <span class="inline-formula"><i>P</i>=0.002</span>) and C12:1 (<span class="inline-formula"><i>P</i>&lt;0.001</span>).</p>
url https://aab.copernicus.org/articles/63/355/2020/aab-63-355-2020.pdf
work_keys_str_mv AT yli variationinthestearoylcoadesaturasegeneiscdianditsinfluenceonmilkfattyacidcompositioninlatelactationdairycattlegrazedonpasture
AT hzhou variationinthestearoylcoadesaturasegeneiscdianditsinfluenceonmilkfattyacidcompositioninlatelactationdairycattlegrazedonpasture
AT lcheng variationinthestearoylcoadesaturasegeneiscdianditsinfluenceonmilkfattyacidcompositioninlatelactationdairycattlegrazedonpasture
AT jzhao variationinthestearoylcoadesaturasegeneiscdianditsinfluenceonmilkfattyacidcompositioninlatelactationdairycattlegrazedonpasture
AT jhickford variationinthestearoylcoadesaturasegeneiscdianditsinfluenceonmilkfattyacidcompositioninlatelactationdairycattlegrazedonpasture
_version_ 1724464905100197888
spelling doaj-fb89198bef92492c85de605933234b7b2020-11-25T03:56:28ZengCopernicus PublicationsArchives Animal Breeding0003-94382363-98222020-11-016335536610.5194/aab-63-355-2020Variation in the stearoyl-CoA desaturase gene (<i>SCD</i>) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pastureY. Li0H. Zhou1L. Cheng2J. Zhao3J. Hickford4Department of Agricultural Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New ZealandDepartment of Agricultural Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New ZealandFaculty of Veterinary and Agricultural Sciences, Dookie College, The University of Melbourne, Victoria 3647, AustraliaDepartment of Agricultural Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New ZealandDepartment of Agricultural Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand<p>Gene markers have become useful tools for improving animal genetics and breeding since they improve the accuracy of selection for superior breeding stock. In this study, the stearoyl-CoA desaturase (<span class="inline-formula">Δ</span>-9-desaturase) gene (<i>SCD</i>) was investigated in New Zealand pasture-grazed Holstein–Friesian&thinsp;<span class="inline-formula">×</span>&thinsp;Jersey cows. Three nucleotide substitutions were identified in exon 5 of the gene (c.702A/G, c.762T/C and c.878C/T), and a single nucleotide substitution was identified in intron 5 (c.880<span class="inline-formula">+</span>105A/G). The c.878C/T substitution would, if expressed, result in the amino acid substitution p.A293V. Four nucleotide substitutions (c.*1783A/G, c.*1883C/T, c.*1984G/A and c.*2066T/C/G) were identified in the 3<span class="inline-formula"><sup>′</sup></span>-untranslated region (3<span class="inline-formula"><sup>′</sup></span>-UTR), and these resulted in three nucleotide sequence variants (named <span class="inline-formula"><i>a</i></span>, <span class="inline-formula"><i>b</i></span> and <span class="inline-formula"><i>c</i>)</span>. The sequence that would encode valine (V) at position 293 of <i>SCD</i> was linked to 3<span class="inline-formula"><sup>′</sup></span>-UTR variant <span class="inline-formula"><i>a</i></span>, and the sequence that would encode alanine (A) was linked to variants <span class="inline-formula"><i>b</i></span> and <span class="inline-formula"><i>c</i></span>. The frequency of the genotypes was as follows: <i>VV</i> (equivalent to <i>aa</i>: 15.1&thinsp;%), <i>VA</i> (equivalent to <span class="inline-formula"><i>ab</i>+<i>ac</i></span>: 50.0&thinsp;%) and <i>AA</i> (equivalent to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext mathvariant="italic">bb</mtext><mo>+</mo><mtext mathvariant="italic">cc</mtext><mo>+</mo><mtext mathvariant="italic">bc</mtext></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="bb73c420fc528c40fcd87a4c53f6a4ae"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aab-63-355-2020-ie00001.svg" width="61pt" height="10pt" src="aab-63-355-2020-ie00001.png"/></svg:svg></span></span>: 34.9&thinsp;%). The cows with the <span class="inline-formula"><i>V</i></span> variant produced less C10:1, C12:1 and C14:1 fatty acid (FA) but more C10:0, C11:0, C14:0, C16:1 and C18:2 FA than the <span class="inline-formula"><i>A</i></span> variant cows (<span class="inline-formula"><i>P</i>&lt;0.001</span>). Effects of c.*1783A/G and c.*2066T/C/G on milk fat composition were also found for the <i>AA</i> cows. The presence of <span class="inline-formula"><i>c</i></span> was associated with decreased levels of C16:1 (<span class="inline-formula"><i>P</i>&lt;0.001</span>), C17:1 (<span class="inline-formula"><i>P</i>=0.001</span>), C18:2 <i>cis</i>-9, <i>trans</i>-13 (<span class="inline-formula"><i>P</i>=0.045</span>), C18:2 <i>cis</i>-9, <i>trans</i>-12 (<span class="inline-formula"><i>P</i>=0.018</span>) FA and C16:1 FA index (<span class="inline-formula"><i>P</i>&lt;0.001</span>). The presence of <span class="inline-formula"><i>b</i></span> was associated with increased levels of C13:0 <i>iso</i> FAs (<span class="inline-formula"><i>P</i>&lt;0.001</span>), monounsaturated FA (MUFA; <span class="inline-formula"><i>P</i>=0.002</span>) and C12:1 (<span class="inline-formula"><i>P</i>&lt;0.001</span>).</p>https://aab.copernicus.org/articles/63/355/2020/aab-63-355-2020.pdf