A Long Baseline Three Carrier Ambiguity Resolution with a New Ionospheric Constraint

Global navigation satellite sensors can transmit three frequency signals. When the classical three-carrier ambiguity resolution (TCAR) is applied to long baselines of hundreds of kilometres, the narrow-lane integer ambiguity resolution (IAR) is affected by the remaining double-differenced (DD) ionos...

Full description

Bibliographic Details
Main Authors: Yafei Ning, Yunbin Yuan, Zhen Huang, Yanju Chai, Bingfeng Tan
Format: Article
Language:English
Published: MDPI AG 2016-11-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:http://www.mdpi.com/2220-9964/5/11/198
Description
Summary:Global navigation satellite sensors can transmit three frequency signals. When the classical three-carrier ambiguity resolution (TCAR) is applied to long baselines of hundreds of kilometres, the narrow-lane integer ambiguity resolution (IAR) is affected by the remaining double-differenced (DD) ionospheric delays. As such, large amounts of observational data are typically needed for successful recovery. To strengthen ionospheric delays, we analysed the combination of three frequency signals and a new ambiguity-free ionospheric combination where the least amount of noise is defined, which is enhanced with epoch-differenced ionospheric delays to provide better absolute ionospheric delay and temporal change. To optimize ionosphere estimations, we propose defining the optimal smoothing length, and also propose a strategy to diagnose wrongly determined ionospheric estimations. With such ionospheric information, we can obtain the ionosphere-weighted model by incorporating the ionospheric information to the geometry-based model and use the real triple-frequency observations to evaluate our method. Our results show that the precision of ionospheric estimations from our new ionospheric model is 25% higher than that from the current combination method and that it can provide real-time smoothed ionospheric delay with magnitudes defined to the nearest centimetre. Additionally, using ionospheric estimation as a constraint, the ionosphere-weighted model requires 20% less time to generate the first-fixed solution (TFFS) than the geometry-based model.
ISSN:2220-9964