Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4.
The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. SiRNAs (small interfere RNAs) have been proven to induce the silencing of cyst nematode genes. However, whether small RNAs from soybean root have evolved a similar mechanism against SCN is un...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4214822?pdf=render |
id |
doaj-fb56bbf0428548ac9ea8f2641ebe4483 |
---|---|
record_format |
Article |
spelling |
doaj-fb56bbf0428548ac9ea8f2641ebe44832020-11-25T00:13:11ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01910e11005110.1371/journal.pone.0110051Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4.Miaoyun XuYinghui LiQiuxue ZhangTao XuLijuan QiuYunliu FanLei WangThe soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. SiRNAs (small interfere RNAs) have been proven to induce the silencing of cyst nematode genes. However, whether small RNAs from soybean root have evolved a similar mechanism against SCN is unknown. Two genetically related soybean sister lines (ZP03-5373 and ZP03-5413), which are resistant and susceptible, respectively, to SCN race 4 infection were selected for small RNA deep sequencing to identify small RNAs targeted to SCN. We identified 71 less-conserved miRNAs-miRNAs* counterparts belonging to 32 families derived from 91 loci, and 88 novel soybean-specific miRNAs with distinct expression patterns. The identified miRNAs targeted 42 genes representing a wide range of enzymatic and regulatory activities. Roots of soybean conserved one TAS (Trans-acting siRNA) gene family with a similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profile. In addition, we found that six miRNAs (gma-miR393, 1507, 1510, 1515, 171, 2118) guide targets to produce secondary phasiRNAs (phased, secondary, small interfering RNAs) in soybean root. Multiple targets of these phasiRNAs were predicted and detected. Importantly, we also found that the expression of 34 miRNAs differed significantly between the two lines. Seven ZP03-5373-specific miRNAs were differentially expressed after SCN infection. Forty-four transcripts from SCN were predicted to be potential targets of ZP03-5373-specific differential miRNAs. These findings suggest that miRNAs play an important role in the soybean response to SCN.http://europepmc.org/articles/PMC4214822?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Miaoyun Xu Yinghui Li Qiuxue Zhang Tao Xu Lijuan Qiu Yunliu Fan Lei Wang |
spellingShingle |
Miaoyun Xu Yinghui Li Qiuxue Zhang Tao Xu Lijuan Qiu Yunliu Fan Lei Wang Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. PLoS ONE |
author_facet |
Miaoyun Xu Yinghui Li Qiuxue Zhang Tao Xu Lijuan Qiu Yunliu Fan Lei Wang |
author_sort |
Miaoyun Xu |
title |
Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. |
title_short |
Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. |
title_full |
Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. |
title_fullStr |
Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. |
title_full_unstemmed |
Novel miRNA and phasiRNA biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to SCN race 4. |
title_sort |
novel mirna and phasirna biogenesis networks in soybean roots from two sister lines that are resistant and susceptible to scn race 4. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. SiRNAs (small interfere RNAs) have been proven to induce the silencing of cyst nematode genes. However, whether small RNAs from soybean root have evolved a similar mechanism against SCN is unknown. Two genetically related soybean sister lines (ZP03-5373 and ZP03-5413), which are resistant and susceptible, respectively, to SCN race 4 infection were selected for small RNA deep sequencing to identify small RNAs targeted to SCN. We identified 71 less-conserved miRNAs-miRNAs* counterparts belonging to 32 families derived from 91 loci, and 88 novel soybean-specific miRNAs with distinct expression patterns. The identified miRNAs targeted 42 genes representing a wide range of enzymatic and regulatory activities. Roots of soybean conserved one TAS (Trans-acting siRNA) gene family with a similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profile. In addition, we found that six miRNAs (gma-miR393, 1507, 1510, 1515, 171, 2118) guide targets to produce secondary phasiRNAs (phased, secondary, small interfering RNAs) in soybean root. Multiple targets of these phasiRNAs were predicted and detected. Importantly, we also found that the expression of 34 miRNAs differed significantly between the two lines. Seven ZP03-5373-specific miRNAs were differentially expressed after SCN infection. Forty-four transcripts from SCN were predicted to be potential targets of ZP03-5373-specific differential miRNAs. These findings suggest that miRNAs play an important role in the soybean response to SCN. |
url |
http://europepmc.org/articles/PMC4214822?pdf=render |
work_keys_str_mv |
AT miaoyunxu novelmirnaandphasirnabiogenesisnetworksinsoybeanrootsfromtwosisterlinesthatareresistantandsusceptibletoscnrace4 AT yinghuili novelmirnaandphasirnabiogenesisnetworksinsoybeanrootsfromtwosisterlinesthatareresistantandsusceptibletoscnrace4 AT qiuxuezhang novelmirnaandphasirnabiogenesisnetworksinsoybeanrootsfromtwosisterlinesthatareresistantandsusceptibletoscnrace4 AT taoxu novelmirnaandphasirnabiogenesisnetworksinsoybeanrootsfromtwosisterlinesthatareresistantandsusceptibletoscnrace4 AT lijuanqiu novelmirnaandphasirnabiogenesisnetworksinsoybeanrootsfromtwosisterlinesthatareresistantandsusceptibletoscnrace4 AT yunliufan novelmirnaandphasirnabiogenesisnetworksinsoybeanrootsfromtwosisterlinesthatareresistantandsusceptibletoscnrace4 AT leiwang novelmirnaandphasirnabiogenesisnetworksinsoybeanrootsfromtwosisterlinesthatareresistantandsusceptibletoscnrace4 |
_version_ |
1725395985913348096 |