Spinning particle interacting with electromagnetic and antisymmetric gauge fields in anti-de Sitter space
Abstract Massless spinning particle model that interacts with electromagnetic and antisymmetric gauge fields in anti-de Sitter space-time is considered as a constrained Hamiltonian system. d-dimensional anti-de Sitter space-time is realized as a real projective manifold parametrized by the homogeneo...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-05-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-019-6939-5 |
Summary: | Abstract Massless spinning particle model that interacts with electromagnetic and antisymmetric gauge fields in anti-de Sitter space-time is considered as a constrained Hamiltonian system. d-dimensional anti-de Sitter space-time is realized as a real projective manifold parametrized by the homogeneous coordinates. Classical constraints that generate in the presence of interactions minimal world-line supersymmetry algebra extended by the dilatations of the ambient-space homogeneous coordinates are found. Various representations of the Lagrangian of the spinning particle are obtained. Dirac quantization is shown to produce first- and second-order equations for the wave function of the spinning particle that are presented in the homogeneous, inhomogeneous and intrinsic coordinates of $$AdS_d$$ AdSd . |
---|---|
ISSN: | 1434-6044 1434-6052 |