Effect of Welding Heat Input on Simulated HAZ Areas in S960QL High Strength Steel

When the weldability of high strength steels is analyzed, it is the softening in the heat-affected zone (HAZ) that is mostly investigated, and the reduction of toughness properties is generally less considered. The outstanding toughness properties of quenched and tempered high strength steels cannot...

Full description

Bibliographic Details
Main Author: Marcell Gáspár
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/9/11/1226
Description
Summary:When the weldability of high strength steels is analyzed, it is the softening in the heat-affected zone (HAZ) that is mostly investigated, and the reduction of toughness properties is generally less considered. The outstanding toughness properties of quenched and tempered high strength steels cannot be adequately preserved during the welding due to the unfavorable microstructural changes in the HAZ. Relevant technological variants (<i>t</i><sub>8/5</sub> = 2.5&#8722;100 s) for arc welding technologies were applied during the HAZ simulation of S960QL steel (EN 10025-6) in a Gleeble 3500 physical simulator, and the effect of cooling time on the critical HAZ areas of single and multipass welded joints was analyzed. Thermal cycles were determined according to the Rykalin 3D model. The properties of the selected coarse-grained (CGHAZ), intercritical (ICHAZ) and intercritically reheated coarse-grained (ICCGHAZ) zones were investigated by scanning electron microscope, macro and micro hardness tests and instrumented Charpy V-notch pendulum impact tests. The examined HAZ subzones indicated higher sensitivity to the welding heat input compared to conventional structural steels. Due to the observed brittle behavior of all subzones in the whole <i>t</i><sub>8/5</sub> range, the possible lowest welding heat input should be applied in order to minimize the volume of HAZ that does not put fulfillment of the allowed maximal (450 HV10) hardness at risk and does not lead to the formation of cold cracks.
ISSN:2075-4701