Gran method for end point anticipation in monosegmented flow titration

An automatic potentiometric monosegmented flow titration procedure based on Gran linearisation approach has been developed. The controlling program can estimate the end point of the titration after the addition of three or four aliquots of titrant. Alternatively, the end point can be determined by t...

Full description

Bibliographic Details
Main Authors: Aquino Emerson V, Pasquini Celio, Rohwedder Jarbas J. R, Raimundo Jr Ivo M, Montenegro M. Conceição B. S. M, Araújo Alberto N
Format: Article
Language:English
Published: Sociedade Brasileira de Química 2004-01-01
Series:Journal of the Brazilian Chemical Society
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532004000100017
Description
Summary:An automatic potentiometric monosegmented flow titration procedure based on Gran linearisation approach has been developed. The controlling program can estimate the end point of the titration after the addition of three or four aliquots of titrant. Alternatively, the end point can be determined by the second derivative procedure. In this case, additional volumes of titrant are added until the vicinity of the end point and three points before and after the stoichiometric point are used for end point calculation. The performance of the system was assessed by the determination of chloride in isotonic beverages and parenteral solutions. The system employs a tubular Ag2S/AgCl indicator electrode. A typical titration, performed according to the IUPAC definition, requires only 60 mL of sample and about the same volume of titrant (AgNO3) solution. A complete titration can be carried out in 1 - 5 min. The accuracy and precision (relative standard deviation of ten replicates) are 2% and 1% for the Gran and 1% and 0.5% for the Gran/derivative end point determination procedures, respectively. The proposed system reduces the time to perform a titration, ensuring low sample and reagent consumption, and full automatic sampling and titrant addition in a calibration-free titration protocol.
ISSN:0103-5053