Seismic pulse propagation with constant Q and stable probability distributions
The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Istituto Nazionale di Geofisica e Vulcanologia (INGV)
1997-06-01
|
Series: | Annals of Geophysics |
Subjects: | |
Online Access: | http://www.annalsofgeophysics.eu/index.php/annals/article/view/3863 |
id |
doaj-fae18ff514044b5c86ca692ad7c643d6 |
---|---|
record_format |
Article |
spelling |
doaj-fae18ff514044b5c86ca692ad7c643d62020-11-24T22:06:34ZengIstituto Nazionale di Geofisica e Vulcanologia (INGV)Annals of Geophysics1593-52132037-416X1997-06-0140510.4401/ag-3863Seismic pulse propagation with constant Q and stable probability distributionsM. TomirottiF. MainardiThe one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright type) in the similarity variable and their behaviours turn out to be intermediate between those for the limiting cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy and Signalling problems are shown to be related to stable probability distributions with an index of stability determined by the order of the fractional time derivative in the evolution equation.http://www.annalsofgeophysics.eu/index.php/annals/article/view/3863Earth anelasticityquality factorwave propagationfractional derivativesstable probability distributions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Tomirotti F. Mainardi |
spellingShingle |
M. Tomirotti F. Mainardi Seismic pulse propagation with constant Q and stable probability distributions Annals of Geophysics Earth anelasticity quality factor wave propagation fractional derivatives stable probability distributions |
author_facet |
M. Tomirotti F. Mainardi |
author_sort |
M. Tomirotti |
title |
Seismic pulse propagation with constant Q and stable probability distributions |
title_short |
Seismic pulse propagation with constant Q and stable probability distributions |
title_full |
Seismic pulse propagation with constant Q and stable probability distributions |
title_fullStr |
Seismic pulse propagation with constant Q and stable probability distributions |
title_full_unstemmed |
Seismic pulse propagation with constant Q and stable probability distributions |
title_sort |
seismic pulse propagation with constant q and stable probability distributions |
publisher |
Istituto Nazionale di Geofisica e Vulcanologia (INGV) |
series |
Annals of Geophysics |
issn |
1593-5213 2037-416X |
publishDate |
1997-06-01 |
description |
The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright type) in the similarity variable and their behaviours turn out to be intermediate between those for the limiting cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy and Signalling problems are shown to be related to stable probability distributions with an index of stability determined by the order of the fractional time derivative in the evolution equation. |
topic |
Earth anelasticity quality factor wave propagation fractional derivatives stable probability distributions |
url |
http://www.annalsofgeophysics.eu/index.php/annals/article/view/3863 |
work_keys_str_mv |
AT mtomirotti seismicpulsepropagationwithconstantqandstableprobabilitydistributions AT fmainardi seismicpulsepropagationwithconstantqandstableprobabilitydistributions |
_version_ |
1725823084030590976 |