Existence of homoclinic orbit for second-order nonlinear difference equation
By using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation $\Delta \left[p(t)\Delta u(t-1)\right] +f(t,u(t))=0$ has at least one homoclinic orbit, where $t\in \mathbb{Z},\ u\in \mathbb{R}$.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2010-12-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=532 |
id |
doaj-faddb1323a704a62863e0023c7172cf0 |
---|---|
record_format |
Article |
spelling |
doaj-faddb1323a704a62863e0023c7172cf02021-07-14T07:21:22ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752010-12-0120107211410.14232/ejqtde.2010.1.72532Existence of homoclinic orbit for second-order nonlinear difference equationPeng Chen0Li Xiao1China Three Gorges University, Yichang, Hubei, P. R. ChinaCentral South University, Changsha, Hunan, P. R. ChinaBy using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation $\Delta \left[p(t)\Delta u(t-1)\right] +f(t,u(t))=0$ has at least one homoclinic orbit, where $t\in \mathbb{Z},\ u\in \mathbb{R}$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=532 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Peng Chen Li Xiao |
spellingShingle |
Peng Chen Li Xiao Existence of homoclinic orbit for second-order nonlinear difference equation Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
Peng Chen Li Xiao |
author_sort |
Peng Chen |
title |
Existence of homoclinic orbit for second-order nonlinear difference equation |
title_short |
Existence of homoclinic orbit for second-order nonlinear difference equation |
title_full |
Existence of homoclinic orbit for second-order nonlinear difference equation |
title_fullStr |
Existence of homoclinic orbit for second-order nonlinear difference equation |
title_full_unstemmed |
Existence of homoclinic orbit for second-order nonlinear difference equation |
title_sort |
existence of homoclinic orbit for second-order nonlinear difference equation |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2010-12-01 |
description |
By using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation $\Delta \left[p(t)\Delta u(t-1)\right] +f(t,u(t))=0$ has at least one homoclinic orbit, where $t\in \mathbb{Z},\ u\in \mathbb{R}$. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=532 |
work_keys_str_mv |
AT pengchen existenceofhomoclinicorbitforsecondordernonlineardifferenceequation AT lixiao existenceofhomoclinicorbitforsecondordernonlineardifferenceequation |
_version_ |
1721303774690017280 |