Existence of homoclinic orbit for second-order nonlinear difference equation

By using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation $\Delta \left[p(t)\Delta u(t-1)\right] +f(t,u(t))=0$ has at least one homoclinic orbit, where $t\in \mathbb{Z},\ u\in \mathbb{R}$.

Bibliographic Details
Main Authors: Peng Chen, Li Xiao
Format: Article
Language:English
Published: University of Szeged 2010-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=532
id doaj-faddb1323a704a62863e0023c7172cf0
record_format Article
spelling doaj-faddb1323a704a62863e0023c7172cf02021-07-14T07:21:22ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752010-12-0120107211410.14232/ejqtde.2010.1.72532Existence of homoclinic orbit for second-order nonlinear difference equationPeng Chen0Li Xiao1China Three Gorges University, Yichang, Hubei, P. R. ChinaCentral South University, Changsha, Hunan, P. R. ChinaBy using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation $\Delta \left[p(t)\Delta u(t-1)\right] +f(t,u(t))=0$ has at least one homoclinic orbit, where $t\in \mathbb{Z},\ u\in \mathbb{R}$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=532
collection DOAJ
language English
format Article
sources DOAJ
author Peng Chen
Li Xiao
spellingShingle Peng Chen
Li Xiao
Existence of homoclinic orbit for second-order nonlinear difference equation
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Peng Chen
Li Xiao
author_sort Peng Chen
title Existence of homoclinic orbit for second-order nonlinear difference equation
title_short Existence of homoclinic orbit for second-order nonlinear difference equation
title_full Existence of homoclinic orbit for second-order nonlinear difference equation
title_fullStr Existence of homoclinic orbit for second-order nonlinear difference equation
title_full_unstemmed Existence of homoclinic orbit for second-order nonlinear difference equation
title_sort existence of homoclinic orbit for second-order nonlinear difference equation
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2010-12-01
description By using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation $\Delta \left[p(t)\Delta u(t-1)\right] +f(t,u(t))=0$ has at least one homoclinic orbit, where $t\in \mathbb{Z},\ u\in \mathbb{R}$.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=532
work_keys_str_mv AT pengchen existenceofhomoclinicorbitforsecondordernonlineardifferenceequation
AT lixiao existenceofhomoclinicorbitforsecondordernonlineardifferenceequation
_version_ 1721303774690017280