A decade of GOSAT Proxy satellite CH<sub>4</sub> observations

<p>This work presents the latest release (v9.0) of the University of Leicester GOSAT Proxy <span class="inline-formula">XCH<sub>4</sub></span> dataset. Since the launch of the GOSAT satellite in 2009, these data have been produced by the UK National Centre for...

Full description

Bibliographic Details
Main Authors: R. J. Parker, A. Webb, H. Boesch, P. Somkuti, R. Barrio Guillo, A. Di Noia, N. Kalaitzi, J. S. Anand, P. Bergamaschi, F. Chevallier, P. I. Palmer, L. Feng, N. M. Deutscher, D. G. Feist, D. W. T. Griffith, F. Hase, R. Kivi, I. Morino, J. Notholt, Y.-S. Oh, H. Ohyama, C. Petri, D. F. Pollard, C. Roehl, M. K. Sha, K. Shiomi, K. Strong, R. Sussmann, Y. Té, V. A. Velazco, T. Warneke, P. O. Wennberg, D. Wunch
Format: Article
Language:English
Published: Copernicus Publications 2020-12-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/12/3383/2020/essd-12-3383-2020.pdf
id doaj-fad09a8db4a64e23a0cd9fcfbdf042dd
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author R. J. Parker
R. J. Parker
A. Webb
A. Webb
H. Boesch
H. Boesch
P. Somkuti
R. Barrio Guillo
R. Barrio Guillo
A. Di Noia
N. Kalaitzi
N. Kalaitzi
J. S. Anand
P. Bergamaschi
F. Chevallier
P. I. Palmer
P. I. Palmer
L. Feng
L. Feng
N. M. Deutscher
D. G. Feist
D. G. Feist
D. G. Feist
D. W. T. Griffith
F. Hase
R. Kivi
I. Morino
J. Notholt
Y.-S. Oh
H. Ohyama
C. Petri
D. F. Pollard
C. Roehl
M. K. Sha
K. Shiomi
K. Strong
R. Sussmann
Y. Té
V. A. Velazco
T. Warneke
P. O. Wennberg
D. Wunch
spellingShingle R. J. Parker
R. J. Parker
A. Webb
A. Webb
H. Boesch
H. Boesch
P. Somkuti
R. Barrio Guillo
R. Barrio Guillo
A. Di Noia
N. Kalaitzi
N. Kalaitzi
J. S. Anand
P. Bergamaschi
F. Chevallier
P. I. Palmer
P. I. Palmer
L. Feng
L. Feng
N. M. Deutscher
D. G. Feist
D. G. Feist
D. G. Feist
D. W. T. Griffith
F. Hase
R. Kivi
I. Morino
J. Notholt
Y.-S. Oh
H. Ohyama
C. Petri
D. F. Pollard
C. Roehl
M. K. Sha
K. Shiomi
K. Strong
R. Sussmann
Y. Té
V. A. Velazco
T. Warneke
P. O. Wennberg
D. Wunch
A decade of GOSAT Proxy satellite CH<sub>4</sub> observations
Earth System Science Data
author_facet R. J. Parker
R. J. Parker
A. Webb
A. Webb
H. Boesch
H. Boesch
P. Somkuti
R. Barrio Guillo
R. Barrio Guillo
A. Di Noia
N. Kalaitzi
N. Kalaitzi
J. S. Anand
P. Bergamaschi
F. Chevallier
P. I. Palmer
P. I. Palmer
L. Feng
L. Feng
N. M. Deutscher
D. G. Feist
D. G. Feist
D. G. Feist
D. W. T. Griffith
F. Hase
R. Kivi
I. Morino
J. Notholt
Y.-S. Oh
H. Ohyama
C. Petri
D. F. Pollard
C. Roehl
M. K. Sha
K. Shiomi
K. Strong
R. Sussmann
Y. Té
V. A. Velazco
T. Warneke
P. O. Wennberg
D. Wunch
author_sort R. J. Parker
title A decade of GOSAT Proxy satellite CH<sub>4</sub> observations
title_short A decade of GOSAT Proxy satellite CH<sub>4</sub> observations
title_full A decade of GOSAT Proxy satellite CH<sub>4</sub> observations
title_fullStr A decade of GOSAT Proxy satellite CH<sub>4</sub> observations
title_full_unstemmed A decade of GOSAT Proxy satellite CH<sub>4</sub> observations
title_sort decade of gosat proxy satellite ch<sub>4</sub> observations
publisher Copernicus Publications
series Earth System Science Data
issn 1866-3508
1866-3516
publishDate 2020-12-01
description <p>This work presents the latest release (v9.0) of the University of Leicester GOSAT Proxy <span class="inline-formula">XCH<sub>4</sub></span> dataset. Since the launch of the GOSAT satellite in 2009, these data have been produced by the UK National Centre for Earth Observation (NCEO) as part of the ESA Greenhouse Gas Climate Change Initiative (GHG-CCI) and Copernicus Climate Change Services (C3S) projects. With now over a decade of observations, we outline<span id="page3384"/> the many scientific studies achieved using past versions of these data in order to highlight how this latest version may be used in the future.</p> <p>We describe in detail how the data are generated, providing information and statistics for the entire processing chain from the L1B spectral data through to the final quality-filtered column-averaged dry-air mole fraction (<span class="inline-formula">XCH<sub>4</sub></span>) data. We show that out of the 19.5 million observations made between April 2009 and December 2019, we determine that 7.3 million of these are sufficiently cloud-free (37.6 %) to process further and ultimately obtain 4.6 million (23.5 %) high-quality <span class="inline-formula">XCH<sub>4</sub></span> observations. We separate these totals by observation mode (land and ocean sun glint) and by month, to provide data users with the expected data coverage, including highlighting periods with reduced observations due to instrumental issues.</p> <p>We perform extensive validation of the data against the Total Carbon Column Observing Network (TCCON), comparing to ground-based observations at 22 locations worldwide. We find excellent agreement with TCCON, with an overall correlation coefficient of 0.92 for the 88 345 co-located measurements. The single-measurement precision is found to be 13.72 ppb, and an overall global bias of 9.06 ppb is determined and removed from the Proxy <span class="inline-formula">XCH<sub>4</sub></span> data. Additionally, we validate the separate components of the Proxy (namely the modelled <span class="inline-formula">XCO<sub>2</sub></span> and the <span class="inline-formula">XCH<sub>4</sub>∕XCO<sub>2</sub></span> ratio) and find these to be in excellent agreement with TCCON.</p> <p>In order to show the utility of the data for future studies, we compare against simulated <span class="inline-formula">XCH<sub>4</sub></span> from the TM5 model. We find a high degree of consistency between the model and observations throughout both space and time. When focusing on specific regions, we find average differences ranging from just 3.9 to 15.4 ppb. We find the phase and magnitude of the seasonal cycle to be in excellent agreement, with an average correlation coefficient of 0.93 and a mean seasonal cycle amplitude difference across all regions of <span class="inline-formula">−0.84</span> ppb.</p> <p>These data are available at <a href="https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb">https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb</a> <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx68">Parker and Boesch</a>, <a href="#bib1.bibx68">2020</a>)</span>.</p>
url https://essd.copernicus.org/articles/12/3383/2020/essd-12-3383-2020.pdf
work_keys_str_mv AT rjparker adecadeofgosatproxysatellitechsub4subobservations
AT rjparker adecadeofgosatproxysatellitechsub4subobservations
AT awebb adecadeofgosatproxysatellitechsub4subobservations
AT awebb adecadeofgosatproxysatellitechsub4subobservations
AT hboesch adecadeofgosatproxysatellitechsub4subobservations
AT hboesch adecadeofgosatproxysatellitechsub4subobservations
AT psomkuti adecadeofgosatproxysatellitechsub4subobservations
AT rbarrioguillo adecadeofgosatproxysatellitechsub4subobservations
AT rbarrioguillo adecadeofgosatproxysatellitechsub4subobservations
AT adinoia adecadeofgosatproxysatellitechsub4subobservations
AT nkalaitzi adecadeofgosatproxysatellitechsub4subobservations
AT nkalaitzi adecadeofgosatproxysatellitechsub4subobservations
AT jsanand adecadeofgosatproxysatellitechsub4subobservations
AT pbergamaschi adecadeofgosatproxysatellitechsub4subobservations
AT fchevallier adecadeofgosatproxysatellitechsub4subobservations
AT pipalmer adecadeofgosatproxysatellitechsub4subobservations
AT pipalmer adecadeofgosatproxysatellitechsub4subobservations
AT lfeng adecadeofgosatproxysatellitechsub4subobservations
AT lfeng adecadeofgosatproxysatellitechsub4subobservations
AT nmdeutscher adecadeofgosatproxysatellitechsub4subobservations
AT dgfeist adecadeofgosatproxysatellitechsub4subobservations
AT dgfeist adecadeofgosatproxysatellitechsub4subobservations
AT dgfeist adecadeofgosatproxysatellitechsub4subobservations
AT dwtgriffith adecadeofgosatproxysatellitechsub4subobservations
AT fhase adecadeofgosatproxysatellitechsub4subobservations
AT rkivi adecadeofgosatproxysatellitechsub4subobservations
AT imorino adecadeofgosatproxysatellitechsub4subobservations
AT jnotholt adecadeofgosatproxysatellitechsub4subobservations
AT ysoh adecadeofgosatproxysatellitechsub4subobservations
AT hohyama adecadeofgosatproxysatellitechsub4subobservations
AT cpetri adecadeofgosatproxysatellitechsub4subobservations
AT dfpollard adecadeofgosatproxysatellitechsub4subobservations
AT croehl adecadeofgosatproxysatellitechsub4subobservations
AT mksha adecadeofgosatproxysatellitechsub4subobservations
AT kshiomi adecadeofgosatproxysatellitechsub4subobservations
AT kstrong adecadeofgosatproxysatellitechsub4subobservations
AT rsussmann adecadeofgosatproxysatellitechsub4subobservations
AT yte adecadeofgosatproxysatellitechsub4subobservations
AT vavelazco adecadeofgosatproxysatellitechsub4subobservations
AT twarneke adecadeofgosatproxysatellitechsub4subobservations
AT powennberg adecadeofgosatproxysatellitechsub4subobservations
AT dwunch adecadeofgosatproxysatellitechsub4subobservations
AT rjparker decadeofgosatproxysatellitechsub4subobservations
AT rjparker decadeofgosatproxysatellitechsub4subobservations
AT awebb decadeofgosatproxysatellitechsub4subobservations
AT awebb decadeofgosatproxysatellitechsub4subobservations
AT hboesch decadeofgosatproxysatellitechsub4subobservations
AT hboesch decadeofgosatproxysatellitechsub4subobservations
AT psomkuti decadeofgosatproxysatellitechsub4subobservations
AT rbarrioguillo decadeofgosatproxysatellitechsub4subobservations
AT rbarrioguillo decadeofgosatproxysatellitechsub4subobservations
AT adinoia decadeofgosatproxysatellitechsub4subobservations
AT nkalaitzi decadeofgosatproxysatellitechsub4subobservations
AT nkalaitzi decadeofgosatproxysatellitechsub4subobservations
AT jsanand decadeofgosatproxysatellitechsub4subobservations
AT pbergamaschi decadeofgosatproxysatellitechsub4subobservations
AT fchevallier decadeofgosatproxysatellitechsub4subobservations
AT pipalmer decadeofgosatproxysatellitechsub4subobservations
AT pipalmer decadeofgosatproxysatellitechsub4subobservations
AT lfeng decadeofgosatproxysatellitechsub4subobservations
AT lfeng decadeofgosatproxysatellitechsub4subobservations
AT nmdeutscher decadeofgosatproxysatellitechsub4subobservations
AT dgfeist decadeofgosatproxysatellitechsub4subobservations
AT dgfeist decadeofgosatproxysatellitechsub4subobservations
AT dgfeist decadeofgosatproxysatellitechsub4subobservations
AT dwtgriffith decadeofgosatproxysatellitechsub4subobservations
AT fhase decadeofgosatproxysatellitechsub4subobservations
AT rkivi decadeofgosatproxysatellitechsub4subobservations
AT imorino decadeofgosatproxysatellitechsub4subobservations
AT jnotholt decadeofgosatproxysatellitechsub4subobservations
AT ysoh decadeofgosatproxysatellitechsub4subobservations
AT hohyama decadeofgosatproxysatellitechsub4subobservations
AT cpetri decadeofgosatproxysatellitechsub4subobservations
AT dfpollard decadeofgosatproxysatellitechsub4subobservations
AT croehl decadeofgosatproxysatellitechsub4subobservations
AT mksha decadeofgosatproxysatellitechsub4subobservations
AT kshiomi decadeofgosatproxysatellitechsub4subobservations
AT kstrong decadeofgosatproxysatellitechsub4subobservations
AT rsussmann decadeofgosatproxysatellitechsub4subobservations
AT yte decadeofgosatproxysatellitechsub4subobservations
AT vavelazco decadeofgosatproxysatellitechsub4subobservations
AT twarneke decadeofgosatproxysatellitechsub4subobservations
AT powennberg decadeofgosatproxysatellitechsub4subobservations
AT dwunch decadeofgosatproxysatellitechsub4subobservations
_version_ 1724383772214820864
spelling doaj-fad09a8db4a64e23a0cd9fcfbdf042dd2020-12-14T09:39:11ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162020-12-01123383341210.5194/essd-12-3383-2020A decade of GOSAT Proxy satellite CH<sub>4</sub> observationsR. J. Parker0R. J. Parker1A. Webb2A. Webb3H. Boesch4H. Boesch5P. Somkuti6R. Barrio Guillo7R. Barrio Guillo8A. Di Noia9N. Kalaitzi10N. Kalaitzi11J. S. Anand12P. Bergamaschi13F. Chevallier14P. I. Palmer15P. I. Palmer16L. Feng17L. Feng18N. M. Deutscher19D. G. Feist20D. G. Feist21D. G. Feist22D. W. T. Griffith23F. Hase24R. Kivi25I. Morino26J. Notholt27Y.-S. Oh28H. Ohyama29C. Petri30D. F. Pollard31C. Roehl32M. K. Sha33K. Shiomi34K. Strong35R. Sussmann36Y. Té37V. A. Velazco38T. Warneke39P. O. Wennberg40D. Wunch41National Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKNational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKNational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USANational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKNational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKEuropean Commission Joint Research Centre, Ispra (Va), ItalyLaboratoire des Sciences du Climat et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, FranceSchool of GeoSciences, University of Edinburgh, Edinburgh, Scotland, UKNational Centre for Earth Observation, University of Edinburgh, Edinburgh, Scotland, UKSchool of GeoSciences, University of Edinburgh, Edinburgh, Scotland, UKNational Centre for Earth Observation, University of Edinburgh, Edinburgh, Scotland, UKCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, AustraliaLudwig-Maximilians-Universität München, Lehrstuhl für Physik der Atmosphäre, Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, AustraliaKarlsruhe Institute of Technology, IMK-ASF, Karlsruhe, GermanySpace and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, FinlandNational Institute for Environmental Studies (NIES), Tsukuba, JapanInstitute of Environmental Physics, University of Bremen, Bremen, GermanyClimate Research Division, National Institute of Meteorological Sciences (NIMS), Jeju-do 63568, Republic of KoreaNational Institute for Environmental Studies (NIES), Tsukuba, JapanInstitute of Environmental Physics, University of Bremen, Bremen, GermanyNational Institute of Water and Atmospheric Research Ltd (NIWA), Lauder, New ZealandCalifornia Institute of Technology, Pasadena, CA 91125, USARoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumEarth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, JapanDepartment of Physics, University of Toronto, Toronto, ON M5S 1A7, CanadaKarlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, GermanyLaboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL), Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, FranceCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, AustraliaInstitute of Environmental Physics, University of Bremen, Bremen, GermanyCalifornia Institute of Technology, Pasadena, CA 91125, USADepartment of Physics, University of Toronto, Toronto, Canada<p>This work presents the latest release (v9.0) of the University of Leicester GOSAT Proxy <span class="inline-formula">XCH<sub>4</sub></span> dataset. Since the launch of the GOSAT satellite in 2009, these data have been produced by the UK National Centre for Earth Observation (NCEO) as part of the ESA Greenhouse Gas Climate Change Initiative (GHG-CCI) and Copernicus Climate Change Services (C3S) projects. With now over a decade of observations, we outline<span id="page3384"/> the many scientific studies achieved using past versions of these data in order to highlight how this latest version may be used in the future.</p> <p>We describe in detail how the data are generated, providing information and statistics for the entire processing chain from the L1B spectral data through to the final quality-filtered column-averaged dry-air mole fraction (<span class="inline-formula">XCH<sub>4</sub></span>) data. We show that out of the 19.5 million observations made between April 2009 and December 2019, we determine that 7.3 million of these are sufficiently cloud-free (37.6 %) to process further and ultimately obtain 4.6 million (23.5 %) high-quality <span class="inline-formula">XCH<sub>4</sub></span> observations. We separate these totals by observation mode (land and ocean sun glint) and by month, to provide data users with the expected data coverage, including highlighting periods with reduced observations due to instrumental issues.</p> <p>We perform extensive validation of the data against the Total Carbon Column Observing Network (TCCON), comparing to ground-based observations at 22 locations worldwide. We find excellent agreement with TCCON, with an overall correlation coefficient of 0.92 for the 88 345 co-located measurements. The single-measurement precision is found to be 13.72 ppb, and an overall global bias of 9.06 ppb is determined and removed from the Proxy <span class="inline-formula">XCH<sub>4</sub></span> data. Additionally, we validate the separate components of the Proxy (namely the modelled <span class="inline-formula">XCO<sub>2</sub></span> and the <span class="inline-formula">XCH<sub>4</sub>∕XCO<sub>2</sub></span> ratio) and find these to be in excellent agreement with TCCON.</p> <p>In order to show the utility of the data for future studies, we compare against simulated <span class="inline-formula">XCH<sub>4</sub></span> from the TM5 model. We find a high degree of consistency between the model and observations throughout both space and time. When focusing on specific regions, we find average differences ranging from just 3.9 to 15.4 ppb. We find the phase and magnitude of the seasonal cycle to be in excellent agreement, with an average correlation coefficient of 0.93 and a mean seasonal cycle amplitude difference across all regions of <span class="inline-formula">−0.84</span> ppb.</p> <p>These data are available at <a href="https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb">https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb</a> <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx68">Parker and Boesch</a>, <a href="#bib1.bibx68">2020</a>)</span>.</p>https://essd.copernicus.org/articles/12/3383/2020/essd-12-3383-2020.pdf