A decade of GOSAT Proxy satellite CH<sub>4</sub> observations
<p>This work presents the latest release (v9.0) of the University of Leicester GOSAT Proxy <span class="inline-formula">XCH<sub>4</sub></span> dataset. Since the launch of the GOSAT satellite in 2009, these data have been produced by the UK National Centre for...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-12-01
|
Series: | Earth System Science Data |
Online Access: | https://essd.copernicus.org/articles/12/3383/2020/essd-12-3383-2020.pdf |
id |
doaj-fad09a8db4a64e23a0cd9fcfbdf042dd |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
R. J. Parker R. J. Parker A. Webb A. Webb H. Boesch H. Boesch P. Somkuti R. Barrio Guillo R. Barrio Guillo A. Di Noia N. Kalaitzi N. Kalaitzi J. S. Anand P. Bergamaschi F. Chevallier P. I. Palmer P. I. Palmer L. Feng L. Feng N. M. Deutscher D. G. Feist D. G. Feist D. G. Feist D. W. T. Griffith F. Hase R. Kivi I. Morino J. Notholt Y.-S. Oh H. Ohyama C. Petri D. F. Pollard C. Roehl M. K. Sha K. Shiomi K. Strong R. Sussmann Y. Té V. A. Velazco T. Warneke P. O. Wennberg D. Wunch |
spellingShingle |
R. J. Parker R. J. Parker A. Webb A. Webb H. Boesch H. Boesch P. Somkuti R. Barrio Guillo R. Barrio Guillo A. Di Noia N. Kalaitzi N. Kalaitzi J. S. Anand P. Bergamaschi F. Chevallier P. I. Palmer P. I. Palmer L. Feng L. Feng N. M. Deutscher D. G. Feist D. G. Feist D. G. Feist D. W. T. Griffith F. Hase R. Kivi I. Morino J. Notholt Y.-S. Oh H. Ohyama C. Petri D. F. Pollard C. Roehl M. K. Sha K. Shiomi K. Strong R. Sussmann Y. Té V. A. Velazco T. Warneke P. O. Wennberg D. Wunch A decade of GOSAT Proxy satellite CH<sub>4</sub> observations Earth System Science Data |
author_facet |
R. J. Parker R. J. Parker A. Webb A. Webb H. Boesch H. Boesch P. Somkuti R. Barrio Guillo R. Barrio Guillo A. Di Noia N. Kalaitzi N. Kalaitzi J. S. Anand P. Bergamaschi F. Chevallier P. I. Palmer P. I. Palmer L. Feng L. Feng N. M. Deutscher D. G. Feist D. G. Feist D. G. Feist D. W. T. Griffith F. Hase R. Kivi I. Morino J. Notholt Y.-S. Oh H. Ohyama C. Petri D. F. Pollard C. Roehl M. K. Sha K. Shiomi K. Strong R. Sussmann Y. Té V. A. Velazco T. Warneke P. O. Wennberg D. Wunch |
author_sort |
R. J. Parker |
title |
A decade of GOSAT Proxy satellite CH<sub>4</sub> observations |
title_short |
A decade of GOSAT Proxy satellite CH<sub>4</sub> observations |
title_full |
A decade of GOSAT Proxy satellite CH<sub>4</sub> observations |
title_fullStr |
A decade of GOSAT Proxy satellite CH<sub>4</sub> observations |
title_full_unstemmed |
A decade of GOSAT Proxy satellite CH<sub>4</sub> observations |
title_sort |
decade of gosat proxy satellite ch<sub>4</sub> observations |
publisher |
Copernicus Publications |
series |
Earth System Science Data |
issn |
1866-3508 1866-3516 |
publishDate |
2020-12-01 |
description |
<p>This work presents the latest release (v9.0) of the University of Leicester GOSAT Proxy <span class="inline-formula">XCH<sub>4</sub></span> dataset. Since the launch of the GOSAT satellite in 2009, these data have been produced by the UK National Centre for Earth Observation (NCEO) as part of the ESA Greenhouse Gas Climate Change Initiative (GHG-CCI) and Copernicus Climate Change Services (C3S) projects. With now over a decade of observations, we outline<span id="page3384"/> the many scientific studies achieved using past versions of these data in order to highlight how this latest version may be used in the future.</p>
<p>We describe in detail how the data are generated, providing information and statistics for the entire processing chain from the L1B spectral data through to the final quality-filtered column-averaged dry-air mole fraction (<span class="inline-formula">XCH<sub>4</sub></span>) data. We show that out of the 19.5 million observations made between April 2009 and December 2019, we determine that 7.3 million of these are sufficiently cloud-free (37.6 %) to process further and ultimately obtain 4.6 million (23.5 %) high-quality <span class="inline-formula">XCH<sub>4</sub></span> observations. We separate these totals by observation mode (land and ocean sun glint) and by month, to provide data users with the expected data coverage, including highlighting periods with reduced observations due to instrumental issues.</p>
<p>We perform extensive validation of the data against the Total Carbon Column Observing Network (TCCON), comparing to ground-based observations at 22 locations worldwide. We find excellent agreement with TCCON, with an overall correlation coefficient of 0.92 for the 88 345 co-located measurements. The single-measurement precision is found to be 13.72 ppb, and an overall global bias of 9.06 ppb is determined and removed from the Proxy <span class="inline-formula">XCH<sub>4</sub></span> data. Additionally, we validate the separate components of the Proxy (namely the modelled <span class="inline-formula">XCO<sub>2</sub></span> and the <span class="inline-formula">XCH<sub>4</sub>∕XCO<sub>2</sub></span> ratio) and find these to be in excellent agreement with TCCON.</p>
<p>In order to show the utility of the data for future studies, we compare against simulated <span class="inline-formula">XCH<sub>4</sub></span> from the TM5 model. We find a high degree of consistency between the model and observations throughout both space and time. When focusing on specific regions, we find average differences ranging from just 3.9 to 15.4 ppb. We find the phase and magnitude of the seasonal cycle to be in excellent agreement, with an average correlation coefficient of 0.93 and a mean seasonal cycle amplitude difference across all regions of <span class="inline-formula">−0.84</span> ppb.</p>
<p>These data are available at <a href="https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb">https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb</a> <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx68">Parker and Boesch</a>, <a href="#bib1.bibx68">2020</a>)</span>.</p> |
url |
https://essd.copernicus.org/articles/12/3383/2020/essd-12-3383-2020.pdf |
work_keys_str_mv |
AT rjparker adecadeofgosatproxysatellitechsub4subobservations AT rjparker adecadeofgosatproxysatellitechsub4subobservations AT awebb adecadeofgosatproxysatellitechsub4subobservations AT awebb adecadeofgosatproxysatellitechsub4subobservations AT hboesch adecadeofgosatproxysatellitechsub4subobservations AT hboesch adecadeofgosatproxysatellitechsub4subobservations AT psomkuti adecadeofgosatproxysatellitechsub4subobservations AT rbarrioguillo adecadeofgosatproxysatellitechsub4subobservations AT rbarrioguillo adecadeofgosatproxysatellitechsub4subobservations AT adinoia adecadeofgosatproxysatellitechsub4subobservations AT nkalaitzi adecadeofgosatproxysatellitechsub4subobservations AT nkalaitzi adecadeofgosatproxysatellitechsub4subobservations AT jsanand adecadeofgosatproxysatellitechsub4subobservations AT pbergamaschi adecadeofgosatproxysatellitechsub4subobservations AT fchevallier adecadeofgosatproxysatellitechsub4subobservations AT pipalmer adecadeofgosatproxysatellitechsub4subobservations AT pipalmer adecadeofgosatproxysatellitechsub4subobservations AT lfeng adecadeofgosatproxysatellitechsub4subobservations AT lfeng adecadeofgosatproxysatellitechsub4subobservations AT nmdeutscher adecadeofgosatproxysatellitechsub4subobservations AT dgfeist adecadeofgosatproxysatellitechsub4subobservations AT dgfeist adecadeofgosatproxysatellitechsub4subobservations AT dgfeist adecadeofgosatproxysatellitechsub4subobservations AT dwtgriffith adecadeofgosatproxysatellitechsub4subobservations AT fhase adecadeofgosatproxysatellitechsub4subobservations AT rkivi adecadeofgosatproxysatellitechsub4subobservations AT imorino adecadeofgosatproxysatellitechsub4subobservations AT jnotholt adecadeofgosatproxysatellitechsub4subobservations AT ysoh adecadeofgosatproxysatellitechsub4subobservations AT hohyama adecadeofgosatproxysatellitechsub4subobservations AT cpetri adecadeofgosatproxysatellitechsub4subobservations AT dfpollard adecadeofgosatproxysatellitechsub4subobservations AT croehl adecadeofgosatproxysatellitechsub4subobservations AT mksha adecadeofgosatproxysatellitechsub4subobservations AT kshiomi adecadeofgosatproxysatellitechsub4subobservations AT kstrong adecadeofgosatproxysatellitechsub4subobservations AT rsussmann adecadeofgosatproxysatellitechsub4subobservations AT yte adecadeofgosatproxysatellitechsub4subobservations AT vavelazco adecadeofgosatproxysatellitechsub4subobservations AT twarneke adecadeofgosatproxysatellitechsub4subobservations AT powennberg adecadeofgosatproxysatellitechsub4subobservations AT dwunch adecadeofgosatproxysatellitechsub4subobservations AT rjparker decadeofgosatproxysatellitechsub4subobservations AT rjparker decadeofgosatproxysatellitechsub4subobservations AT awebb decadeofgosatproxysatellitechsub4subobservations AT awebb decadeofgosatproxysatellitechsub4subobservations AT hboesch decadeofgosatproxysatellitechsub4subobservations AT hboesch decadeofgosatproxysatellitechsub4subobservations AT psomkuti decadeofgosatproxysatellitechsub4subobservations AT rbarrioguillo decadeofgosatproxysatellitechsub4subobservations AT rbarrioguillo decadeofgosatproxysatellitechsub4subobservations AT adinoia decadeofgosatproxysatellitechsub4subobservations AT nkalaitzi decadeofgosatproxysatellitechsub4subobservations AT nkalaitzi decadeofgosatproxysatellitechsub4subobservations AT jsanand decadeofgosatproxysatellitechsub4subobservations AT pbergamaschi decadeofgosatproxysatellitechsub4subobservations AT fchevallier decadeofgosatproxysatellitechsub4subobservations AT pipalmer decadeofgosatproxysatellitechsub4subobservations AT pipalmer decadeofgosatproxysatellitechsub4subobservations AT lfeng decadeofgosatproxysatellitechsub4subobservations AT lfeng decadeofgosatproxysatellitechsub4subobservations AT nmdeutscher decadeofgosatproxysatellitechsub4subobservations AT dgfeist decadeofgosatproxysatellitechsub4subobservations AT dgfeist decadeofgosatproxysatellitechsub4subobservations AT dgfeist decadeofgosatproxysatellitechsub4subobservations AT dwtgriffith decadeofgosatproxysatellitechsub4subobservations AT fhase decadeofgosatproxysatellitechsub4subobservations AT rkivi decadeofgosatproxysatellitechsub4subobservations AT imorino decadeofgosatproxysatellitechsub4subobservations AT jnotholt decadeofgosatproxysatellitechsub4subobservations AT ysoh decadeofgosatproxysatellitechsub4subobservations AT hohyama decadeofgosatproxysatellitechsub4subobservations AT cpetri decadeofgosatproxysatellitechsub4subobservations AT dfpollard decadeofgosatproxysatellitechsub4subobservations AT croehl decadeofgosatproxysatellitechsub4subobservations AT mksha decadeofgosatproxysatellitechsub4subobservations AT kshiomi decadeofgosatproxysatellitechsub4subobservations AT kstrong decadeofgosatproxysatellitechsub4subobservations AT rsussmann decadeofgosatproxysatellitechsub4subobservations AT yte decadeofgosatproxysatellitechsub4subobservations AT vavelazco decadeofgosatproxysatellitechsub4subobservations AT twarneke decadeofgosatproxysatellitechsub4subobservations AT powennberg decadeofgosatproxysatellitechsub4subobservations AT dwunch decadeofgosatproxysatellitechsub4subobservations |
_version_ |
1724383772214820864 |
spelling |
doaj-fad09a8db4a64e23a0cd9fcfbdf042dd2020-12-14T09:39:11ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162020-12-01123383341210.5194/essd-12-3383-2020A decade of GOSAT Proxy satellite CH<sub>4</sub> observationsR. J. Parker0R. J. Parker1A. Webb2A. Webb3H. Boesch4H. Boesch5P. Somkuti6R. Barrio Guillo7R. Barrio Guillo8A. Di Noia9N. Kalaitzi10N. Kalaitzi11J. S. Anand12P. Bergamaschi13F. Chevallier14P. I. Palmer15P. I. Palmer16L. Feng17L. Feng18N. M. Deutscher19D. G. Feist20D. G. Feist21D. G. Feist22D. W. T. Griffith23F. Hase24R. Kivi25I. Morino26J. Notholt27Y.-S. Oh28H. Ohyama29C. Petri30D. F. Pollard31C. Roehl32M. K. Sha33K. Shiomi34K. Strong35R. Sussmann36Y. Té37V. A. Velazco38T. Warneke39P. O. Wennberg40D. Wunch41National Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKNational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKNational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USANational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKNational Centre for Earth Observation, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKEarth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UKEuropean Commission Joint Research Centre, Ispra (Va), ItalyLaboratoire des Sciences du Climat et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, FranceSchool of GeoSciences, University of Edinburgh, Edinburgh, Scotland, UKNational Centre for Earth Observation, University of Edinburgh, Edinburgh, Scotland, UKSchool of GeoSciences, University of Edinburgh, Edinburgh, Scotland, UKNational Centre for Earth Observation, University of Edinburgh, Edinburgh, Scotland, UKCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, AustraliaLudwig-Maximilians-Universität München, Lehrstuhl für Physik der Atmosphäre, Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, AustraliaKarlsruhe Institute of Technology, IMK-ASF, Karlsruhe, GermanySpace and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, FinlandNational Institute for Environmental Studies (NIES), Tsukuba, JapanInstitute of Environmental Physics, University of Bremen, Bremen, GermanyClimate Research Division, National Institute of Meteorological Sciences (NIMS), Jeju-do 63568, Republic of KoreaNational Institute for Environmental Studies (NIES), Tsukuba, JapanInstitute of Environmental Physics, University of Bremen, Bremen, GermanyNational Institute of Water and Atmospheric Research Ltd (NIWA), Lauder, New ZealandCalifornia Institute of Technology, Pasadena, CA 91125, USARoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumEarth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, JapanDepartment of Physics, University of Toronto, Toronto, ON M5S 1A7, CanadaKarlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, GermanyLaboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL), Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, FranceCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, AustraliaInstitute of Environmental Physics, University of Bremen, Bremen, GermanyCalifornia Institute of Technology, Pasadena, CA 91125, USADepartment of Physics, University of Toronto, Toronto, Canada<p>This work presents the latest release (v9.0) of the University of Leicester GOSAT Proxy <span class="inline-formula">XCH<sub>4</sub></span> dataset. Since the launch of the GOSAT satellite in 2009, these data have been produced by the UK National Centre for Earth Observation (NCEO) as part of the ESA Greenhouse Gas Climate Change Initiative (GHG-CCI) and Copernicus Climate Change Services (C3S) projects. With now over a decade of observations, we outline<span id="page3384"/> the many scientific studies achieved using past versions of these data in order to highlight how this latest version may be used in the future.</p> <p>We describe in detail how the data are generated, providing information and statistics for the entire processing chain from the L1B spectral data through to the final quality-filtered column-averaged dry-air mole fraction (<span class="inline-formula">XCH<sub>4</sub></span>) data. We show that out of the 19.5 million observations made between April 2009 and December 2019, we determine that 7.3 million of these are sufficiently cloud-free (37.6 %) to process further and ultimately obtain 4.6 million (23.5 %) high-quality <span class="inline-formula">XCH<sub>4</sub></span> observations. We separate these totals by observation mode (land and ocean sun glint) and by month, to provide data users with the expected data coverage, including highlighting periods with reduced observations due to instrumental issues.</p> <p>We perform extensive validation of the data against the Total Carbon Column Observing Network (TCCON), comparing to ground-based observations at 22 locations worldwide. We find excellent agreement with TCCON, with an overall correlation coefficient of 0.92 for the 88 345 co-located measurements. The single-measurement precision is found to be 13.72 ppb, and an overall global bias of 9.06 ppb is determined and removed from the Proxy <span class="inline-formula">XCH<sub>4</sub></span> data. Additionally, we validate the separate components of the Proxy (namely the modelled <span class="inline-formula">XCO<sub>2</sub></span> and the <span class="inline-formula">XCH<sub>4</sub>∕XCO<sub>2</sub></span> ratio) and find these to be in excellent agreement with TCCON.</p> <p>In order to show the utility of the data for future studies, we compare against simulated <span class="inline-formula">XCH<sub>4</sub></span> from the TM5 model. We find a high degree of consistency between the model and observations throughout both space and time. When focusing on specific regions, we find average differences ranging from just 3.9 to 15.4 ppb. We find the phase and magnitude of the seasonal cycle to be in excellent agreement, with an average correlation coefficient of 0.93 and a mean seasonal cycle amplitude difference across all regions of <span class="inline-formula">−0.84</span> ppb.</p> <p>These data are available at <a href="https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb">https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb</a> <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx68">Parker and Boesch</a>, <a href="#bib1.bibx68">2020</a>)</span>.</p>https://essd.copernicus.org/articles/12/3383/2020/essd-12-3383-2020.pdf |