Making sound vortices by metasurfaces

Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The...

Full description

Bibliographic Details
Main Authors: Liping Ye, Chunyin Qiu, Jiuyang Lu, Kun Tang, Han Jia, Manzhu Ke, Shasha Peng, Zhengyou Liu
Format: Article
Language:English
Published: AIP Publishing LLC 2016-08-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4961062
Description
Summary:Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.
ISSN:2158-3226