Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors
While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process tha...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Society for Microbiology
2018-02-01
|
Series: | mBio |
Online Access: | http://mbio.asm.org/cgi/content/full/9/1/e02203-17 |
id |
doaj-fabdeb7fc992468d9351ef1c9e74ebb8 |
---|---|
record_format |
Article |
spelling |
doaj-fabdeb7fc992468d9351ef1c9e74ebb82021-07-02T02:10:53ZengAmerican Society for MicrobiologymBio2150-75112018-02-0191e02203-1710.1128/mBio.02203-17Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron DonorsAnnette R. RowePournami RajeevAbhiney JainSahand PirbadianAkihiro OkamotoJeffrey A. GralnickMohamed Y. El-NaggarKenneth H. NealsonMarkus W. RibbeWhile typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited.http://mbio.asm.org/cgi/content/full/9/1/e02203-17 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Annette R. Rowe Pournami Rajeev Abhiney Jain Sahand Pirbadian Akihiro Okamoto Jeffrey A. Gralnick Mohamed Y. El-Naggar Kenneth H. Nealson Markus W. Ribbe |
spellingShingle |
Annette R. Rowe Pournami Rajeev Abhiney Jain Sahand Pirbadian Akihiro Okamoto Jeffrey A. Gralnick Mohamed Y. El-Naggar Kenneth H. Nealson Markus W. Ribbe Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors mBio |
author_facet |
Annette R. Rowe Pournami Rajeev Abhiney Jain Sahand Pirbadian Akihiro Okamoto Jeffrey A. Gralnick Mohamed Y. El-Naggar Kenneth H. Nealson Markus W. Ribbe |
author_sort |
Annette R. Rowe |
title |
Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_short |
Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_full |
Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_fullStr |
Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_full_unstemmed |
Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_sort |
tracking electron uptake from a cathode into shewanella cells: implications for energy acquisition from solid-substrate electron donors |
publisher |
American Society for Microbiology |
series |
mBio |
issn |
2150-7511 |
publishDate |
2018-02-01 |
description |
While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. |
url |
http://mbio.asm.org/cgi/content/full/9/1/e02203-17 |
work_keys_str_mv |
AT annetterrowe trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT pournamirajeev trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT abhineyjain trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT sahandpirbadian trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT akihirookamoto trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT jeffreyagralnick trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT mohamedyelnaggar trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT kennethhnealson trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT markuswribbe trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors |
_version_ |
1721343767739367424 |