The complete product of annihilatingly unique digraphs
Let G be a digraph with n vertices and let A(G) be its adjacency matrix. A monic polynomial f(x) of degree at most n is called an annihilating polynomial of G if f(A(G))=0. G is said to be annihilatingly unique if it possesses a unique annihilating polynomial. Difans and diwheels are two classes of...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2005-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS.2005.1327 |