Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016

<p>The growth rate of atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) reflects the net effect of emissions and uptake resulting from anthropogenic and natural carbon sources and sinks. Annual mean <span class="inline-for...

Full description

Bibliographic Details
Main Authors: M. Buchwitz, M. Reuter, O. Schneising, S. Noël, B. Gier, H. Bovensmann, J. P. Burrows, H. Boesch, J. Anand, R. J. Parker, P. Somkuti, R. G. Detmers, O. P. Hasekamp, I. Aben, A. Butz, A. Kuze, H. Suto, Y. Yoshida, D. Crisp, C. O'Dell
Format: Article
Language:English
Published: Copernicus Publications 2018-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/17355/2018/acp-18-17355-2018.pdf
id doaj-fab976b67d6d48dabf52def4641d1b85
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author M. Buchwitz
M. Reuter
O. Schneising
S. Noël
B. Gier
B. Gier
H. Bovensmann
J. P. Burrows
H. Boesch
H. Boesch
J. Anand
J. Anand
R. J. Parker
R. J. Parker
P. Somkuti
P. Somkuti
R. G. Detmers
O. P. Hasekamp
I. Aben
A. Butz
A. Butz
A. Butz
A. Kuze
H. Suto
Y. Yoshida
D. Crisp
C. O'Dell
spellingShingle M. Buchwitz
M. Reuter
O. Schneising
S. Noël
B. Gier
B. Gier
H. Bovensmann
J. P. Burrows
H. Boesch
H. Boesch
J. Anand
J. Anand
R. J. Parker
R. J. Parker
P. Somkuti
P. Somkuti
R. G. Detmers
O. P. Hasekamp
I. Aben
A. Butz
A. Butz
A. Butz
A. Kuze
H. Suto
Y. Yoshida
D. Crisp
C. O'Dell
Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
Atmospheric Chemistry and Physics
author_facet M. Buchwitz
M. Reuter
O. Schneising
S. Noël
B. Gier
B. Gier
H. Bovensmann
J. P. Burrows
H. Boesch
H. Boesch
J. Anand
J. Anand
R. J. Parker
R. J. Parker
P. Somkuti
P. Somkuti
R. G. Detmers
O. P. Hasekamp
I. Aben
A. Butz
A. Butz
A. Butz
A. Kuze
H. Suto
Y. Yoshida
D. Crisp
C. O'Dell
author_sort M. Buchwitz
title Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
title_short Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
title_full Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
title_fullStr Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
title_full_unstemmed Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
title_sort computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2018-12-01
description <p>The growth rate of atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) reflects the net effect of emissions and uptake resulting from anthropogenic and natural carbon sources and sinks. Annual mean <span class="inline-formula">CO<sub>2</sub></span> growth rates have been determined from satellite retrievals of column-averaged dry-air mole fractions of <span class="inline-formula">CO<sub>2</sub></span>, i.e. <span class="inline-formula">XCO<sub>2</sub></span>, for the years 2003 to 2016. The <span class="inline-formula">XCO<sub>2</sub></span> growth rates agree with National Oceanic and Atmospheric Administration (NOAA) growth rates from <span class="inline-formula">CO<sub>2</sub></span> surface observations within the uncertainty of the satellite-derived growth rates (mean difference&thinsp;<span class="inline-formula">±</span>&thinsp;standard deviation: <span class="inline-formula">0.0±0.3</span>&thinsp;ppm&thinsp;year<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>R</i></span>: 0.82). This new and independent data set confirms record-large growth rates of around 3&thinsp;ppm&thinsp;year<span class="inline-formula"><sup>−1</sup></span> in 2015 and 2016, which are attributed to the 2015–2016 El Niño. Based on a comparison of the satellite-derived growth rates with human <span class="inline-formula">CO<sub>2</sub></span> emissions from fossil fuel combustion and with El Niño Southern Oscillation (ENSO) indices, we estimate by how much the impact of ENSO dominates the impact of fossil-fuel-burning-related emissions in explaining the variance of the atmospheric <span class="inline-formula">CO<sub>2</sub></span> growth rate. Our analysis shows that the ENSO impact on <span class="inline-formula">CO<sub>2</sub></span> growth rate variations dominates that of human emissions throughout the period 2003–2016 but in particular during the period 2010–2016 due to strong La Niña and El Niño events. Using the derived growth rates and their uncertainties, we estimate the probability that the impact of ENSO on the variability is larger than the impact of human emissions to be 63&thinsp;% for the time period 2003–2016. If the time period is restricted to 2010–2016, this probability increases to 94&thinsp;%.</p>
url https://www.atmos-chem-phys.net/18/17355/2018/acp-18-17355-2018.pdf
work_keys_str_mv AT mbuchwitz computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT mreuter computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT oschneising computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT snoel computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT bgier computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT bgier computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT hbovensmann computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT jpburrows computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT hboesch computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT hboesch computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT janand computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT janand computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT rjparker computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT rjparker computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT psomkuti computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT psomkuti computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT rgdetmers computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT ophasekamp computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT iaben computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT abutz computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT abutz computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT abutz computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT akuze computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT hsuto computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT yyoshida computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT dcrisp computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
AT codell computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016
_version_ 1725644058507870208
spelling doaj-fab976b67d6d48dabf52def4641d1b852020-11-24T22:59:43ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-12-0118173551737010.5194/acp-18-17355-2018Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016M. Buchwitz0M. Reuter1O. Schneising2S. Noël3B. Gier4B. Gier5H. Bovensmann6J. P. Burrows7H. Boesch8H. Boesch9J. Anand10J. Anand11R. J. Parker12R. J. Parker13P. Somkuti14P. Somkuti15R. G. Detmers16O. P. Hasekamp17I. Aben18A. Butz19A. Butz20A. Butz21A. Kuze22H. Suto23Y. Yoshida24D. Crisp25C. O'Dell26Institute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyEarth Observation Science, University of Leicester, Leicester, UKNERC National Centre for Earth Observation, Leicester, UKEarth Observation Science, University of Leicester, Leicester, UKNERC National Centre for Earth Observation, Leicester, UKEarth Observation Science, University of Leicester, Leicester, UKNERC National Centre for Earth Observation, Leicester, UKEarth Observation Science, University of Leicester, Leicester, UKNERC National Centre for Earth Observation, Leicester, UKSRON Netherlands Institute for Space Research, Utrecht, the NetherlandsSRON Netherlands Institute for Space Research, Utrecht, the NetherlandsSRON Netherlands Institute for Space Research, Utrecht, the NetherlandsDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität (LMU), Munich, Germanynow at: Institut für Umweltphysik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, GermanyJapan Aerospace Exploration Agency (JAXA), Tsukuba, JapanJapan Aerospace Exploration Agency (JAXA), Tsukuba, JapanNational Institute for Environmental Studies (NIES), Tsukuba, JapanJet Propulsion Laboratory (JPL), Pasadena, CA, USAColorado State University (CSU), Fort Collins, CO, USA<p>The growth rate of atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) reflects the net effect of emissions and uptake resulting from anthropogenic and natural carbon sources and sinks. Annual mean <span class="inline-formula">CO<sub>2</sub></span> growth rates have been determined from satellite retrievals of column-averaged dry-air mole fractions of <span class="inline-formula">CO<sub>2</sub></span>, i.e. <span class="inline-formula">XCO<sub>2</sub></span>, for the years 2003 to 2016. The <span class="inline-formula">XCO<sub>2</sub></span> growth rates agree with National Oceanic and Atmospheric Administration (NOAA) growth rates from <span class="inline-formula">CO<sub>2</sub></span> surface observations within the uncertainty of the satellite-derived growth rates (mean difference&thinsp;<span class="inline-formula">±</span>&thinsp;standard deviation: <span class="inline-formula">0.0±0.3</span>&thinsp;ppm&thinsp;year<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>R</i></span>: 0.82). This new and independent data set confirms record-large growth rates of around 3&thinsp;ppm&thinsp;year<span class="inline-formula"><sup>−1</sup></span> in 2015 and 2016, which are attributed to the 2015–2016 El Niño. Based on a comparison of the satellite-derived growth rates with human <span class="inline-formula">CO<sub>2</sub></span> emissions from fossil fuel combustion and with El Niño Southern Oscillation (ENSO) indices, we estimate by how much the impact of ENSO dominates the impact of fossil-fuel-burning-related emissions in explaining the variance of the atmospheric <span class="inline-formula">CO<sub>2</sub></span> growth rate. Our analysis shows that the ENSO impact on <span class="inline-formula">CO<sub>2</sub></span> growth rate variations dominates that of human emissions throughout the period 2003–2016 but in particular during the period 2010–2016 due to strong La Niña and El Niño events. Using the derived growth rates and their uncertainties, we estimate the probability that the impact of ENSO on the variability is larger than the impact of human emissions to be 63&thinsp;% for the time period 2003–2016. If the time period is restricted to 2010–2016, this probability increases to 94&thinsp;%.</p>https://www.atmos-chem-phys.net/18/17355/2018/acp-18-17355-2018.pdf