Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
<p>The growth rate of atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) reflects the net effect of emissions and uptake resulting from anthropogenic and natural carbon sources and sinks. Annual mean <span class="inline-for...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-12-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/17355/2018/acp-18-17355-2018.pdf |
id |
doaj-fab976b67d6d48dabf52def4641d1b85 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Buchwitz M. Reuter O. Schneising S. Noël B. Gier B. Gier H. Bovensmann J. P. Burrows H. Boesch H. Boesch J. Anand J. Anand R. J. Parker R. J. Parker P. Somkuti P. Somkuti R. G. Detmers O. P. Hasekamp I. Aben A. Butz A. Butz A. Butz A. Kuze H. Suto Y. Yoshida D. Crisp C. O'Dell |
spellingShingle |
M. Buchwitz M. Reuter O. Schneising S. Noël B. Gier B. Gier H. Bovensmann J. P. Burrows H. Boesch H. Boesch J. Anand J. Anand R. J. Parker R. J. Parker P. Somkuti P. Somkuti R. G. Detmers O. P. Hasekamp I. Aben A. Butz A. Butz A. Butz A. Kuze H. Suto Y. Yoshida D. Crisp C. O'Dell Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016 Atmospheric Chemistry and Physics |
author_facet |
M. Buchwitz M. Reuter O. Schneising S. Noël B. Gier B. Gier H. Bovensmann J. P. Burrows H. Boesch H. Boesch J. Anand J. Anand R. J. Parker R. J. Parker P. Somkuti P. Somkuti R. G. Detmers O. P. Hasekamp I. Aben A. Butz A. Butz A. Butz A. Kuze H. Suto Y. Yoshida D. Crisp C. O'Dell |
author_sort |
M. Buchwitz |
title |
Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016 |
title_short |
Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016 |
title_full |
Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016 |
title_fullStr |
Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016 |
title_full_unstemmed |
Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016 |
title_sort |
computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016 |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2018-12-01 |
description |
<p>The growth rate of atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) reflects the net
effect of emissions and uptake resulting from anthropogenic and natural
carbon sources and sinks. Annual mean <span class="inline-formula">CO<sub>2</sub></span> growth rates have been
determined from satellite retrievals of column-averaged dry-air mole fractions
of <span class="inline-formula">CO<sub>2</sub></span>, i.e. <span class="inline-formula">XCO<sub>2</sub></span>, for the years 2003 to 2016. The <span class="inline-formula">XCO<sub>2</sub></span>
growth rates agree with National Oceanic and Atmospheric Administration
(NOAA) growth rates from <span class="inline-formula">CO<sub>2</sub></span> surface observations within the uncertainty
of the satellite-derived growth rates (mean difference <span class="inline-formula">±</span> standard
deviation: <span class="inline-formula">0.0±0.3</span> ppm year<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>R</i></span>: 0.82). This new and independent data
set confirms record-large growth rates of around 3 ppm year<span class="inline-formula"><sup>−1</sup></span>
in 2015 and 2016, which are attributed to the 2015–2016 El Niño. Based on a comparison of
the satellite-derived growth rates with human <span class="inline-formula">CO<sub>2</sub></span> emissions from fossil
fuel combustion and with El Niño Southern Oscillation (ENSO) indices, we
estimate by how much the impact of ENSO dominates the impact of fossil-fuel-burning-related emissions in explaining the variance of the atmospheric
<span class="inline-formula">CO<sub>2</sub></span> growth rate. Our analysis shows that the ENSO impact on <span class="inline-formula">CO<sub>2</sub></span>
growth rate variations dominates that of human emissions throughout the
period 2003–2016 but in particular during the period 2010–2016 due to strong
La Niña and El Niño events. Using the derived growth rates and their
uncertainties, we estimate the probability that the impact of ENSO on the
variability is larger than the impact of human emissions to be 63 % for the
time period 2003–2016. If the time period is restricted to 2010–2016, this
probability increases to 94 %.</p> |
url |
https://www.atmos-chem-phys.net/18/17355/2018/acp-18-17355-2018.pdf |
work_keys_str_mv |
AT mbuchwitz computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT mreuter computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT oschneising computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT snoel computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT bgier computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT bgier computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT hbovensmann computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT jpburrows computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT hboesch computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT hboesch computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT janand computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT janand computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT rjparker computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT rjparker computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT psomkuti computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT psomkuti computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT rgdetmers computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT ophasekamp computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT iaben computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT abutz computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT abutz computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT abutz computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT akuze computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT hsuto computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT yyoshida computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT dcrisp computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 AT codell computationandanalysisofatmosphericcarbondioxideannualmeangrowthratesfromsatelliteobservationsduring20032016 |
_version_ |
1725644058507870208 |
spelling |
doaj-fab976b67d6d48dabf52def4641d1b852020-11-24T22:59:43ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-12-0118173551737010.5194/acp-18-17355-2018Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016M. Buchwitz0M. Reuter1O. Schneising2S. Noël3B. Gier4B. Gier5H. Bovensmann6J. P. Burrows7H. Boesch8H. Boesch9J. Anand10J. Anand11R. J. Parker12R. J. Parker13P. Somkuti14P. Somkuti15R. G. Detmers16O. P. Hasekamp17I. Aben18A. Butz19A. Butz20A. Butz21A. Kuze22H. Suto23Y. Yoshida24D. Crisp25C. O'Dell26Institute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyEarth Observation Science, University of Leicester, Leicester, UKNERC National Centre for Earth Observation, Leicester, UKEarth Observation Science, University of Leicester, Leicester, UKNERC National Centre for Earth Observation, Leicester, UKEarth Observation Science, University of Leicester, Leicester, UKNERC National Centre for Earth Observation, Leicester, UKEarth Observation Science, University of Leicester, Leicester, UKNERC National Centre for Earth Observation, Leicester, UKSRON Netherlands Institute for Space Research, Utrecht, the NetherlandsSRON Netherlands Institute for Space Research, Utrecht, the NetherlandsSRON Netherlands Institute for Space Research, Utrecht, the NetherlandsDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität (LMU), Munich, Germanynow at: Institut für Umweltphysik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, GermanyJapan Aerospace Exploration Agency (JAXA), Tsukuba, JapanJapan Aerospace Exploration Agency (JAXA), Tsukuba, JapanNational Institute for Environmental Studies (NIES), Tsukuba, JapanJet Propulsion Laboratory (JPL), Pasadena, CA, USAColorado State University (CSU), Fort Collins, CO, USA<p>The growth rate of atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) reflects the net effect of emissions and uptake resulting from anthropogenic and natural carbon sources and sinks. Annual mean <span class="inline-formula">CO<sub>2</sub></span> growth rates have been determined from satellite retrievals of column-averaged dry-air mole fractions of <span class="inline-formula">CO<sub>2</sub></span>, i.e. <span class="inline-formula">XCO<sub>2</sub></span>, for the years 2003 to 2016. The <span class="inline-formula">XCO<sub>2</sub></span> growth rates agree with National Oceanic and Atmospheric Administration (NOAA) growth rates from <span class="inline-formula">CO<sub>2</sub></span> surface observations within the uncertainty of the satellite-derived growth rates (mean difference <span class="inline-formula">±</span> standard deviation: <span class="inline-formula">0.0±0.3</span> ppm year<span class="inline-formula"><sup>−1</sup></span>; <span class="inline-formula"><i>R</i></span>: 0.82). This new and independent data set confirms record-large growth rates of around 3 ppm year<span class="inline-formula"><sup>−1</sup></span> in 2015 and 2016, which are attributed to the 2015–2016 El Niño. Based on a comparison of the satellite-derived growth rates with human <span class="inline-formula">CO<sub>2</sub></span> emissions from fossil fuel combustion and with El Niño Southern Oscillation (ENSO) indices, we estimate by how much the impact of ENSO dominates the impact of fossil-fuel-burning-related emissions in explaining the variance of the atmospheric <span class="inline-formula">CO<sub>2</sub></span> growth rate. Our analysis shows that the ENSO impact on <span class="inline-formula">CO<sub>2</sub></span> growth rate variations dominates that of human emissions throughout the period 2003–2016 but in particular during the period 2010–2016 due to strong La Niña and El Niño events. Using the derived growth rates and their uncertainties, we estimate the probability that the impact of ENSO on the variability is larger than the impact of human emissions to be 63 % for the time period 2003–2016. If the time period is restricted to 2010–2016, this probability increases to 94 %.</p>https://www.atmos-chem-phys.net/18/17355/2018/acp-18-17355-2018.pdf |