Basic properties of Sobolev's spaces on time scales

<p>We study the theory of Sobolev's spaces of functions defined on a closed subinterval of an arbitrary time scale endowed with the Lebesgue <mml:math> <mml:mi>&#x0394;</mml:mi> </mml:math>-measure; analogous properties to that valid for Sobolev's spaces...

Full description

Bibliographic Details
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Advances in Difference Equations
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/ADE/2006/38121
id doaj-faab9782c8d8494ea93e8530ff6603fa
record_format Article
spelling doaj-faab9782c8d8494ea93e8530ff6603fa2020-11-24T23:15:39ZengSpringerOpenAdvances in Difference Equations1687-18392006-01-012006Basic properties of Sobolev's spaces on time scales<p>We study the theory of Sobolev's spaces of functions defined on a closed subinterval of an arbitrary time scale endowed with the Lebesgue <mml:math> <mml:mi>&#x0394;</mml:mi> </mml:math>-measure; analogous properties to that valid for Sobolev's spaces of functions defined on an arbitrary open interval of the real numbers are derived.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/ADE/2006/38121
collection DOAJ
language English
format Article
sources DOAJ
title Basic properties of Sobolev's spaces on time scales
spellingShingle Basic properties of Sobolev's spaces on time scales
Advances in Difference Equations
title_short Basic properties of Sobolev's spaces on time scales
title_full Basic properties of Sobolev's spaces on time scales
title_fullStr Basic properties of Sobolev's spaces on time scales
title_full_unstemmed Basic properties of Sobolev's spaces on time scales
title_sort basic properties of sobolev's spaces on time scales
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
publishDate 2006-01-01
description <p>We study the theory of Sobolev's spaces of functions defined on a closed subinterval of an arbitrary time scale endowed with the Lebesgue <mml:math> <mml:mi>&#x0394;</mml:mi> </mml:math>-measure; analogous properties to that valid for Sobolev's spaces of functions defined on an arbitrary open interval of the real numbers are derived.</p>
url http://www.hindawi.com/GetArticle.aspx?doi=10.1155/ADE/2006/38121
_version_ 1725589964075302912