Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID) system. As a result of adopting thi...

Full description

Bibliographic Details
Main Author: Aydin Azizi
Format: Article
Language:English
Published: Hindawi-Wiley 2017-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2017/8728209
id doaj-fa90b05057194c9c893fd352170d148d
record_format Article
spelling doaj-fa90b05057194c9c893fd352170d148d2020-11-24T22:15:14ZengHindawi-WileyComplexity1076-27871099-05262017-01-01201710.1155/2017/87282098728209Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern ManufacturingAydin Azizi0Department of Engineering, German University of Technology, Muscat, OmanRecent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID) system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP) has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI) techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE) and Ring Probabilistic Logic Neural Networks (RPLNN). The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS), and results have been compared with Genetic Algorithm (GA) that demonstrates the feasibility of the proposed architecture successfully.http://dx.doi.org/10.1155/2017/8728209
collection DOAJ
language English
format Article
sources DOAJ
author Aydin Azizi
spellingShingle Aydin Azizi
Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing
Complexity
author_facet Aydin Azizi
author_sort Aydin Azizi
title Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing
title_short Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing
title_full Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing
title_fullStr Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing
title_full_unstemmed Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing
title_sort introducing a novel hybrid artificial intelligence algorithm to optimize network of industrial applications in modern manufacturing
publisher Hindawi-Wiley
series Complexity
issn 1076-2787
1099-0526
publishDate 2017-01-01
description Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID) system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP) has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI) techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE) and Ring Probabilistic Logic Neural Networks (RPLNN). The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS), and results have been compared with Genetic Algorithm (GA) that demonstrates the feasibility of the proposed architecture successfully.
url http://dx.doi.org/10.1155/2017/8728209
work_keys_str_mv AT aydinazizi introducinganovelhybridartificialintelligencealgorithmtooptimizenetworkofindustrialapplicationsinmodernmanufacturing
_version_ 1725795295366742016