Solving two point boundary value problems for ordinary differential equations using exponential finite difference method
In this article, a new exponential finite difference scheme for the numerical solution of two point boundary value problems with Dirichlet's boundary conditions is proposed. The scheme is based on an exponential approximation of the Taylor expansion for the discretized derivative .The converge...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2016-10-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/22424 |
id |
doaj-fa8d3bf595424ab68d7605bf35d18304 |
---|---|
record_format |
Article |
spelling |
doaj-fa8d3bf595424ab68d7605bf35d183042020-11-24T21:06:47ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882016-10-01341455210.5269/bspm.v34i1.2242411590Solving two point boundary value problems for ordinary differential equations using exponential finite difference methodPramod K. Pandey0Dyal Singh College (Univ. of Delhi) Department of MathematicsIn this article, a new exponential finite difference scheme for the numerical solution of two point boundary value problems with Dirichlet's boundary conditions is proposed. The scheme is based on an exponential approximation of the Taylor expansion for the discretized derivative .The convergence of the scheme discussed under appropriate condition .The theoretical and numerical results show that this new scheme is efficient and at least fourth order accurate.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/22424Two-point Boundary value problemsExponential finite difference methodFourth order finite difference method |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pramod K. Pandey |
spellingShingle |
Pramod K. Pandey Solving two point boundary value problems for ordinary differential equations using exponential finite difference method Boletim da Sociedade Paranaense de Matemática Two-point Boundary value problems Exponential finite difference method Fourth order finite difference method |
author_facet |
Pramod K. Pandey |
author_sort |
Pramod K. Pandey |
title |
Solving two point boundary value problems for ordinary differential equations using exponential finite difference method |
title_short |
Solving two point boundary value problems for ordinary differential equations using exponential finite difference method |
title_full |
Solving two point boundary value problems for ordinary differential equations using exponential finite difference method |
title_fullStr |
Solving two point boundary value problems for ordinary differential equations using exponential finite difference method |
title_full_unstemmed |
Solving two point boundary value problems for ordinary differential equations using exponential finite difference method |
title_sort |
solving two point boundary value problems for ordinary differential equations using exponential finite difference method |
publisher |
Sociedade Brasileira de Matemática |
series |
Boletim da Sociedade Paranaense de Matemática |
issn |
0037-8712 2175-1188 |
publishDate |
2016-10-01 |
description |
In this article, a new exponential finite difference scheme for the numerical solution of two point boundary value problems with Dirichlet's boundary conditions is proposed. The scheme is based on an exponential approximation of the Taylor expansion for the discretized derivative .The convergence of the scheme discussed under appropriate condition .The theoretical and numerical results show that this new scheme is efficient and at least fourth order accurate. |
topic |
Two-point Boundary value problems Exponential finite difference method Fourth order finite difference method |
url |
http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/22424 |
work_keys_str_mv |
AT pramodkpandey solvingtwopointboundaryvalueproblemsforordinarydifferentialequationsusingexponentialfinitedifferencemethod |
_version_ |
1716764721294606336 |