Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)

Pelagic methane oxidation was investigated in dependence on differing hydrographic conditions within the redox zone of the Gotland Deep (GD) and Landsort Deep (LD), central Baltic Sea. The redox zone of both deeps, which indicates the transition between oxic and anoxic conditions, was characterized...

Full description

Bibliographic Details
Main Authors: G. Jakobs, G. Rehder, G. Jost, K. Kießlich, M. Labrenz, O. Schmale
Format: Article
Language:English
Published: Copernicus Publications 2013-12-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/10/7863/2013/bg-10-7863-2013.pdf
id doaj-fa8534c948e2410180a211da62b5c2f6
record_format Article
spelling doaj-fa8534c948e2410180a211da62b5c2f62020-11-24T23:53:40ZengCopernicus PublicationsBiogeosciences1726-41701726-41892013-12-0110127863787510.5194/bg-10-7863-2013Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)G. Jakobs0G. Rehder1G. Jost2K. Kießlich3M. Labrenz4O. Schmale5Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, GermanyLeibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, GermanyLeibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, GermanyLeibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, GermanyLeibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, GermanyLeibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, GermanyPelagic methane oxidation was investigated in dependence on differing hydrographic conditions within the redox zone of the Gotland Deep (GD) and Landsort Deep (LD), central Baltic Sea. The redox zone of both deeps, which indicates the transition between oxic and anoxic conditions, was characterized by a pronounced methane concentration gradient between the deep water (GD: 1233 nM, 223 m; LD: 2935 nM, 422 m) and the surface water (GD and LD < 10 nM). This gradient together with a <sup>13</sup>C CH<sub>4</sub> enrichment (<i>δ</i><sup>13</sup>C CH<sub>4</sub> deep water: GD −84&permil;, LD −71&permil;; redox zone: GD −60&permil;, LD −20&permil;; surface water: GD −47&permil;, LD −50&permil;; <i>δ</i><sup>13</sup>C CH<sub>4</sub> vs. Vienna Pee Dee Belemnite standard), clearly indicating microbial methane consumption within the redox zone. Expression analysis of the methane monooxygenase identified one active type I methanotrophic bacterium in both redox zones. In contrast, the turnover of methane within the redox zones showed strong differences between the two basins (GD: max. 0.12 nM d<sup>−1</sup>, LD: max. 0.61 nM d<sup>−1</sup>), with a nearly four-times-lower turnover time of methane in the LD (GD: 455 d, LD: 127 d). Vertical mixing rates for both deeps were calculated on the base of the methane concentration profile and the consumption of methane in the redox zone (GD: 2.5 × 10<sup>&ndash;6</sup> m<sup>2</sup> s<sup>−1</sup>, LD: 1.6 × 10<sup>&ndash;5</sup> m<sup>2</sup> s<sup>−1</sup>). Our study identified vertical transport of methane from the deep-water body towards the redox zone as well as differing hydrographic conditions (lateral intrusions and vertical mixing) within the redox zone of these deeps as major factors that determine the pelagic methane oxidation.http://www.biogeosciences.net/10/7863/2013/bg-10-7863-2013.pdf
collection DOAJ
language English
format Article
sources DOAJ
author G. Jakobs
G. Rehder
G. Jost
K. Kießlich
M. Labrenz
O. Schmale
spellingShingle G. Jakobs
G. Rehder
G. Jost
K. Kießlich
M. Labrenz
O. Schmale
Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)
Biogeosciences
author_facet G. Jakobs
G. Rehder
G. Jost
K. Kießlich
M. Labrenz
O. Schmale
author_sort G. Jakobs
title Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)
title_short Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)
title_full Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)
title_fullStr Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)
title_full_unstemmed Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)
title_sort comparative studies of pelagic microbial methane oxidation within the redox zones of the gotland deep and landsort deep (central baltic sea)
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2013-12-01
description Pelagic methane oxidation was investigated in dependence on differing hydrographic conditions within the redox zone of the Gotland Deep (GD) and Landsort Deep (LD), central Baltic Sea. The redox zone of both deeps, which indicates the transition between oxic and anoxic conditions, was characterized by a pronounced methane concentration gradient between the deep water (GD: 1233 nM, 223 m; LD: 2935 nM, 422 m) and the surface water (GD and LD < 10 nM). This gradient together with a <sup>13</sup>C CH<sub>4</sub> enrichment (<i>δ</i><sup>13</sup>C CH<sub>4</sub> deep water: GD −84&permil;, LD −71&permil;; redox zone: GD −60&permil;, LD −20&permil;; surface water: GD −47&permil;, LD −50&permil;; <i>δ</i><sup>13</sup>C CH<sub>4</sub> vs. Vienna Pee Dee Belemnite standard), clearly indicating microbial methane consumption within the redox zone. Expression analysis of the methane monooxygenase identified one active type I methanotrophic bacterium in both redox zones. In contrast, the turnover of methane within the redox zones showed strong differences between the two basins (GD: max. 0.12 nM d<sup>−1</sup>, LD: max. 0.61 nM d<sup>−1</sup>), with a nearly four-times-lower turnover time of methane in the LD (GD: 455 d, LD: 127 d). Vertical mixing rates for both deeps were calculated on the base of the methane concentration profile and the consumption of methane in the redox zone (GD: 2.5 × 10<sup>&ndash;6</sup> m<sup>2</sup> s<sup>−1</sup>, LD: 1.6 × 10<sup>&ndash;5</sup> m<sup>2</sup> s<sup>−1</sup>). Our study identified vertical transport of methane from the deep-water body towards the redox zone as well as differing hydrographic conditions (lateral intrusions and vertical mixing) within the redox zone of these deeps as major factors that determine the pelagic methane oxidation.
url http://www.biogeosciences.net/10/7863/2013/bg-10-7863-2013.pdf
work_keys_str_mv AT gjakobs comparativestudiesofpelagicmicrobialmethaneoxidationwithintheredoxzonesofthegotlanddeepandlandsortdeepcentralbalticsea
AT grehder comparativestudiesofpelagicmicrobialmethaneoxidationwithintheredoxzonesofthegotlanddeepandlandsortdeepcentralbalticsea
AT gjost comparativestudiesofpelagicmicrobialmethaneoxidationwithintheredoxzonesofthegotlanddeepandlandsortdeepcentralbalticsea
AT kkießlich comparativestudiesofpelagicmicrobialmethaneoxidationwithintheredoxzonesofthegotlanddeepandlandsortdeepcentralbalticsea
AT mlabrenz comparativestudiesofpelagicmicrobialmethaneoxidationwithintheredoxzonesofthegotlanddeepandlandsortdeepcentralbalticsea
AT oschmale comparativestudiesofpelagicmicrobialmethaneoxidationwithintheredoxzonesofthegotlanddeepandlandsortdeepcentralbalticsea
_version_ 1725468536658198528