Fuzzy Neural Network Control of Thermostatically Controlled Loads for Demand-Side Frequency Regulation

In this paper, a fuzzy neural network controller for regulating demand-side thermostatically controlled loads (TCLs) is designed with the aim of stabilizing the frequency of the smart grid. Specifically, the balance between power supply and demand is achieved by tracking the automatic generation con...

Full description

Bibliographic Details
Main Authors: Zhengwei Qu, Chenglin Xu, Kai Ma, Zongxu Jiao
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/13/2463
Description
Summary:In this paper, a fuzzy neural network controller for regulating demand-side thermostatically controlled loads (TCLs) is designed with the aim of stabilizing the frequency of the smart grid. Specifically, the balance between power supply and demand is achieved by tracking the automatic generation control (AGC) signal in an electric power system. The particle swarm optimization (PSO) and error back propagation (BP) algorithms are used to optimize the control parameters and consequently reduce the tracking errors. The fuzzy neural network can be applied to solve load control problems in power systems, since its self-learning and associative storage functions can deal with the highly nonlinear relationship between input and output. Simulation results show the advantage of the fuzzy neural network control scheme in terms of frequency regulation error and consumer comfort.
ISSN:1996-1073