The growth of the maximal term of Dirichlet series
Let $\Lambda$ be the class of nonnegative sequences $(\lambda_n)$ increasing to $+\infty$, $A\in(-\infty,+\infty]$, $L_A$ be the class of continuous functions increasing to $+\infty$ on $[A_0,A)$, $(\lambda_n)\in\Lambda$, and $F(s)=\sum a_ne^{s\lambda_n}$ be a Dirichlet series such that its maximum...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2018-07-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1472 |
id |
doaj-fa6dbf8ef08740578c6a2edfa229c4a0 |
---|---|
record_format |
Article |
spelling |
doaj-fa6dbf8ef08740578c6a2edfa229c4a02020-11-25T03:20:58ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102018-07-01101798110.15330/cmp.10.1.79-811472The growth of the maximal term of Dirichlet seriesP.V. Filevych0O.B. Hrybel1Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, UkraineVasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, UkraineLet $\Lambda$ be the class of nonnegative sequences $(\lambda_n)$ increasing to $+\infty$, $A\in(-\infty,+\infty]$, $L_A$ be the class of continuous functions increasing to $+\infty$ on $[A_0,A)$, $(\lambda_n)\in\Lambda$, and $F(s)=\sum a_ne^{s\lambda_n}$ be a Dirichlet series such that its maximum term $\mu(\sigma,F)=\max_n|a_n|e^{\sigma\lambda_n}$ is defined for every $\sigma\in(-\infty,A)$. It is proved that for all functions $\alpha\in L_{+\infty}$ and $\beta\in L_A$ the equality$$\rho^*_{\alpha,\beta}(F)=\max_{(\eta_n)\in\Lambda}\overline{\lim_{n\to\infty}}\frac{\alpha(\eta_n)}{\beta\left(\frac{\eta_n}{\lambda_n}+\frac{1}{\lambda_n}\ln\frac{1}{|a_n|}\right)}$$ holds, where $\rho^*_{\alpha,\beta}(F)$ is the generalized $\alpha,\beta$-order of the function $\ln\mu(\sigma,F)$, i.e. $\rho^*_{\alpha,\beta}(F)=0$ if the function $\mu(\sigma,F)$ is bounded on $(-\infty,A)$, and $\rho^*_{\alpha,\beta}(F)=\overline{\lim_{\sigma\uparrow A}}\alpha(\ln\mu(\sigma,F))/\beta(\sigma)$ if the function $\mu(\sigma,F)$ is unbounded on $(-\infty,A)$.https://journals.pnu.edu.ua/index.php/cmp/article/view/1472dirichlet seriesmaximal termcentral indexgeneralized order |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
P.V. Filevych O.B. Hrybel |
spellingShingle |
P.V. Filevych O.B. Hrybel The growth of the maximal term of Dirichlet series Karpatsʹkì Matematičnì Publìkacìï dirichlet series maximal term central index generalized order |
author_facet |
P.V. Filevych O.B. Hrybel |
author_sort |
P.V. Filevych |
title |
The growth of the maximal term of Dirichlet series |
title_short |
The growth of the maximal term of Dirichlet series |
title_full |
The growth of the maximal term of Dirichlet series |
title_fullStr |
The growth of the maximal term of Dirichlet series |
title_full_unstemmed |
The growth of the maximal term of Dirichlet series |
title_sort |
growth of the maximal term of dirichlet series |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 2313-0210 |
publishDate |
2018-07-01 |
description |
Let $\Lambda$ be the class of nonnegative sequences $(\lambda_n)$ increasing to $+\infty$, $A\in(-\infty,+\infty]$, $L_A$ be the class of continuous functions increasing to $+\infty$ on $[A_0,A)$, $(\lambda_n)\in\Lambda$, and $F(s)=\sum a_ne^{s\lambda_n}$ be a Dirichlet series such that its maximum term $\mu(\sigma,F)=\max_n|a_n|e^{\sigma\lambda_n}$ is defined for every $\sigma\in(-\infty,A)$. It is proved that for all functions $\alpha\in L_{+\infty}$ and $\beta\in L_A$ the equality$$\rho^*_{\alpha,\beta}(F)=\max_{(\eta_n)\in\Lambda}\overline{\lim_{n\to\infty}}\frac{\alpha(\eta_n)}{\beta\left(\frac{\eta_n}{\lambda_n}+\frac{1}{\lambda_n}\ln\frac{1}{|a_n|}\right)}$$ holds, where $\rho^*_{\alpha,\beta}(F)$ is the generalized $\alpha,\beta$-order of the function $\ln\mu(\sigma,F)$, i.e. $\rho^*_{\alpha,\beta}(F)=0$ if the function $\mu(\sigma,F)$ is bounded on $(-\infty,A)$, and $\rho^*_{\alpha,\beta}(F)=\overline{\lim_{\sigma\uparrow A}}\alpha(\ln\mu(\sigma,F))/\beta(\sigma)$ if the function $\mu(\sigma,F)$ is unbounded on $(-\infty,A)$. |
topic |
dirichlet series maximal term central index generalized order |
url |
https://journals.pnu.edu.ua/index.php/cmp/article/view/1472 |
work_keys_str_mv |
AT pvfilevych thegrowthofthemaximaltermofdirichletseries AT obhrybel thegrowthofthemaximaltermofdirichletseries AT pvfilevych growthofthemaximaltermofdirichletseries AT obhrybel growthofthemaximaltermofdirichletseries |
_version_ |
1724615566489026560 |