The growth of the maximal term of Dirichlet series

Let $\Lambda$ be the class of nonnegative sequences $(\lambda_n)$ increasing to $+\infty$, $A\in(-\infty,+\infty]$, $L_A$ be the class of continuous functions increasing to $+\infty$ on $[A_0,A)$, $(\lambda_n)\in\Lambda$, and $F(s)=\sum a_ne^{s\lambda_n}$ be a Dirichlet series such that its maximum...

Full description

Bibliographic Details
Main Authors: P.V. Filevych, O.B. Hrybel
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2018-07-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1472
id doaj-fa6dbf8ef08740578c6a2edfa229c4a0
record_format Article
spelling doaj-fa6dbf8ef08740578c6a2edfa229c4a02020-11-25T03:20:58ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102018-07-01101798110.15330/cmp.10.1.79-811472The growth of the maximal term of Dirichlet seriesP.V. Filevych0O.B. Hrybel1Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, UkraineVasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, UkraineLet $\Lambda$ be the class of nonnegative sequences $(\lambda_n)$ increasing to $+\infty$, $A\in(-\infty,+\infty]$, $L_A$ be the class of continuous functions increasing to $+\infty$ on $[A_0,A)$, $(\lambda_n)\in\Lambda$, and $F(s)=\sum a_ne^{s\lambda_n}$ be a Dirichlet series such that its maximum term $\mu(\sigma,F)=\max_n|a_n|e^{\sigma\lambda_n}$ is defined for every $\sigma\in(-\infty,A)$. It is proved that for all functions $\alpha\in L_{+\infty}$ and $\beta\in L_A$ the equality$$\rho^*_{\alpha,\beta}(F)=\max_{(\eta_n)\in\Lambda}\overline{\lim_{n\to\infty}}\frac{\alpha(\eta_n)}{\beta\left(\frac{\eta_n}{\lambda_n}+\frac{1}{\lambda_n}\ln\frac{1}{|a_n|}\right)}$$ holds, where $\rho^*_{\alpha,\beta}(F)$ is the generalized $\alpha,\beta$-order of the function $\ln\mu(\sigma,F)$, i.e. $\rho^*_{\alpha,\beta}(F)=0$ if the function $\mu(\sigma,F)$ is bounded on $(-\infty,A)$, and $\rho^*_{\alpha,\beta}(F)=\overline{\lim_{\sigma\uparrow A}}\alpha(\ln\mu(\sigma,F))/\beta(\sigma)$ if the function $\mu(\sigma,F)$ is unbounded on $(-\infty,A)$.https://journals.pnu.edu.ua/index.php/cmp/article/view/1472dirichlet seriesmaximal termcentral indexgeneralized order
collection DOAJ
language English
format Article
sources DOAJ
author P.V. Filevych
O.B. Hrybel
spellingShingle P.V. Filevych
O.B. Hrybel
The growth of the maximal term of Dirichlet series
Karpatsʹkì Matematičnì Publìkacìï
dirichlet series
maximal term
central index
generalized order
author_facet P.V. Filevych
O.B. Hrybel
author_sort P.V. Filevych
title The growth of the maximal term of Dirichlet series
title_short The growth of the maximal term of Dirichlet series
title_full The growth of the maximal term of Dirichlet series
title_fullStr The growth of the maximal term of Dirichlet series
title_full_unstemmed The growth of the maximal term of Dirichlet series
title_sort growth of the maximal term of dirichlet series
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2018-07-01
description Let $\Lambda$ be the class of nonnegative sequences $(\lambda_n)$ increasing to $+\infty$, $A\in(-\infty,+\infty]$, $L_A$ be the class of continuous functions increasing to $+\infty$ on $[A_0,A)$, $(\lambda_n)\in\Lambda$, and $F(s)=\sum a_ne^{s\lambda_n}$ be a Dirichlet series such that its maximum term $\mu(\sigma,F)=\max_n|a_n|e^{\sigma\lambda_n}$ is defined for every $\sigma\in(-\infty,A)$. It is proved that for all functions $\alpha\in L_{+\infty}$ and $\beta\in L_A$ the equality$$\rho^*_{\alpha,\beta}(F)=\max_{(\eta_n)\in\Lambda}\overline{\lim_{n\to\infty}}\frac{\alpha(\eta_n)}{\beta\left(\frac{\eta_n}{\lambda_n}+\frac{1}{\lambda_n}\ln\frac{1}{|a_n|}\right)}$$ holds, where $\rho^*_{\alpha,\beta}(F)$ is the generalized $\alpha,\beta$-order of the function $\ln\mu(\sigma,F)$, i.e. $\rho^*_{\alpha,\beta}(F)=0$ if the function $\mu(\sigma,F)$ is bounded on $(-\infty,A)$, and $\rho^*_{\alpha,\beta}(F)=\overline{\lim_{\sigma\uparrow A}}\alpha(\ln\mu(\sigma,F))/\beta(\sigma)$ if the function $\mu(\sigma,F)$ is unbounded on $(-\infty,A)$.
topic dirichlet series
maximal term
central index
generalized order
url https://journals.pnu.edu.ua/index.php/cmp/article/view/1472
work_keys_str_mv AT pvfilevych thegrowthofthemaximaltermofdirichletseries
AT obhrybel thegrowthofthemaximaltermofdirichletseries
AT pvfilevych growthofthemaximaltermofdirichletseries
AT obhrybel growthofthemaximaltermofdirichletseries
_version_ 1724615566489026560