Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function

Model Predictive Control (MPC) algorithms typically use the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></mat...

Full description

Bibliographic Details
Main Authors: Maciej Ławryńczuk, Robert Nebeluk
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/17/5835
id doaj-fa5200019c0448a2acd0abc268d8be9d
record_format Article
spelling doaj-fa5200019c0448a2acd0abc268d8be9d2021-09-09T13:56:27ZengMDPI AGSensors1424-82202021-08-01215835583510.3390/s21175835Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-FunctionMaciej Ławryńczuk0Robert Nebeluk1Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, PolandInstitute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, PolandModel Predictive Control (MPC) algorithms typically use the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> cost function, which minimises squared differences of predicted control errors. Such an approach has good numerical properties, but the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm that measures absolute values of the control errors gives better control quality. If a nonlinear model is used for prediction, the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm leads to a difficult, nonlinear, possibly non-differentiable cost function. A computationally efficient alternative is discussed in this work. The solution used consists of two concepts: (a) a neural approximator is used in place of the non-differentiable absolute value function; (b) an advanced trajectory linearisation is performed on-line. As a result, an easy-to-solve quadratic optimisation task is obtained in place of the nonlinear one. Advantages of the presented solution are discussed for a simulated neutralisation benchmark. It is shown that the obtained trajectories are very similar, practically the same, as those possible in the reference scheme with nonlinear optimisation. Furthermore, the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm even gives better performance than the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> one in terms of the classical control performance indicator that measures squared control errors.https://www.mdpi.com/1424-8220/21/17/5835process controlmodel predictive controlL<sub>1</sub> cost functionoptimisation
collection DOAJ
language English
format Article
sources DOAJ
author Maciej Ławryńczuk
Robert Nebeluk
spellingShingle Maciej Ławryńczuk
Robert Nebeluk
Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function
Sensors
process control
model predictive control
L<sub>1</sub> cost function
optimisation
author_facet Maciej Ławryńczuk
Robert Nebeluk
author_sort Maciej Ławryńczuk
title Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function
title_short Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function
title_full Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function
title_fullStr Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function
title_full_unstemmed Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function
title_sort computationally efficient nonlinear model predictive control using the l<sub>1</sub> cost-function
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2021-08-01
description Model Predictive Control (MPC) algorithms typically use the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> cost function, which minimises squared differences of predicted control errors. Such an approach has good numerical properties, but the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm that measures absolute values of the control errors gives better control quality. If a nonlinear model is used for prediction, the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm leads to a difficult, nonlinear, possibly non-differentiable cost function. A computationally efficient alternative is discussed in this work. The solution used consists of two concepts: (a) a neural approximator is used in place of the non-differentiable absolute value function; (b) an advanced trajectory linearisation is performed on-line. As a result, an easy-to-solve quadratic optimisation task is obtained in place of the nonlinear one. Advantages of the presented solution are discussed for a simulated neutralisation benchmark. It is shown that the obtained trajectories are very similar, practically the same, as those possible in the reference scheme with nonlinear optimisation. Furthermore, the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm even gives better performance than the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> one in terms of the classical control performance indicator that measures squared control errors.
topic process control
model predictive control
L<sub>1</sub> cost function
optimisation
url https://www.mdpi.com/1424-8220/21/17/5835
work_keys_str_mv AT maciejławrynczuk computationallyefficientnonlinearmodelpredictivecontrolusingthelsub1subcostfunction
AT robertnebeluk computationallyefficientnonlinearmodelpredictivecontrolusingthelsub1subcostfunction
_version_ 1717759472888184832