Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function
Model Predictive Control (MPC) algorithms typically use the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></mat...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/17/5835 |
id |
doaj-fa5200019c0448a2acd0abc268d8be9d |
---|---|
record_format |
Article |
spelling |
doaj-fa5200019c0448a2acd0abc268d8be9d2021-09-09T13:56:27ZengMDPI AGSensors1424-82202021-08-01215835583510.3390/s21175835Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-FunctionMaciej Ławryńczuk0Robert Nebeluk1Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, PolandInstitute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, PolandModel Predictive Control (MPC) algorithms typically use the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> cost function, which minimises squared differences of predicted control errors. Such an approach has good numerical properties, but the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm that measures absolute values of the control errors gives better control quality. If a nonlinear model is used for prediction, the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm leads to a difficult, nonlinear, possibly non-differentiable cost function. A computationally efficient alternative is discussed in this work. The solution used consists of two concepts: (a) a neural approximator is used in place of the non-differentiable absolute value function; (b) an advanced trajectory linearisation is performed on-line. As a result, an easy-to-solve quadratic optimisation task is obtained in place of the nonlinear one. Advantages of the presented solution are discussed for a simulated neutralisation benchmark. It is shown that the obtained trajectories are very similar, practically the same, as those possible in the reference scheme with nonlinear optimisation. Furthermore, the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm even gives better performance than the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> one in terms of the classical control performance indicator that measures squared control errors.https://www.mdpi.com/1424-8220/21/17/5835process controlmodel predictive controlL<sub>1</sub> cost functionoptimisation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Maciej Ławryńczuk Robert Nebeluk |
spellingShingle |
Maciej Ławryńczuk Robert Nebeluk Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function Sensors process control model predictive control L<sub>1</sub> cost function optimisation |
author_facet |
Maciej Ławryńczuk Robert Nebeluk |
author_sort |
Maciej Ławryńczuk |
title |
Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function |
title_short |
Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function |
title_full |
Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function |
title_fullStr |
Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function |
title_full_unstemmed |
Computationally Efficient Nonlinear Model Predictive Control Using the L<sub>1</sub> Cost-Function |
title_sort |
computationally efficient nonlinear model predictive control using the l<sub>1</sub> cost-function |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2021-08-01 |
description |
Model Predictive Control (MPC) algorithms typically use the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> cost function, which minimises squared differences of predicted control errors. Such an approach has good numerical properties, but the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm that measures absolute values of the control errors gives better control quality. If a nonlinear model is used for prediction, the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm leads to a difficult, nonlinear, possibly non-differentiable cost function. A computationally efficient alternative is discussed in this work. The solution used consists of two concepts: (a) a neural approximator is used in place of the non-differentiable absolute value function; (b) an advanced trajectory linearisation is performed on-line. As a result, an easy-to-solve quadratic optimisation task is obtained in place of the nonlinear one. Advantages of the presented solution are discussed for a simulated neutralisation benchmark. It is shown that the obtained trajectories are very similar, practically the same, as those possible in the reference scheme with nonlinear optimisation. Furthermore, the L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> norm even gives better performance than the classical L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> one in terms of the classical control performance indicator that measures squared control errors. |
topic |
process control model predictive control L<sub>1</sub> cost function optimisation |
url |
https://www.mdpi.com/1424-8220/21/17/5835 |
work_keys_str_mv |
AT maciejławrynczuk computationallyefficientnonlinearmodelpredictivecontrolusingthelsub1subcostfunction AT robertnebeluk computationallyefficientnonlinearmodelpredictivecontrolusingthelsub1subcostfunction |
_version_ |
1717759472888184832 |