MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks
Abstract Deep generative models such as variational autoencoders (VAEs) and generative adversarial networks (GANs) generate and manipulate high-dimensional images. We systematically assess the complementary strengths and weaknesses of these models on single-cell gene expression data. We also develop...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-05-01
|
Series: | Genome Biology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13059-021-02373-4 |