A Novel Adaptive Level Set Segmentation Method

The adaptive distance preserving level set (ADPLS) method is fast and not dependent on the initial contour for the segmentation of images with intensity inhomogeneity, but it often leads to segmentation with compromised accuracy. And the local binary fitting model (LBF) method can achieve segmentati...

Full description

Bibliographic Details
Main Authors: Yazhong Lin, Qian Zheng, Jiaqiang Chen, Qian Cai, Qianjin Feng
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Computational and Mathematical Methods in Medicine
Online Access:http://dx.doi.org/10.1155/2014/914028
Description
Summary:The adaptive distance preserving level set (ADPLS) method is fast and not dependent on the initial contour for the segmentation of images with intensity inhomogeneity, but it often leads to segmentation with compromised accuracy. And the local binary fitting model (LBF) method can achieve segmentation with higher accuracy but with low speed and sensitivity to initial contour placements. In this paper, a novel and adaptive fusing level set method has been presented to combine the desirable properties of these two methods, respectively. In the proposed method, the weights of the ADPLS and LBF are automatically adjusted according to the spatial information of the image. Experimental results show that the comprehensive performance indicators, such as accuracy, speed, and stability, can be significantly improved by using this improved method.
ISSN:1748-670X
1748-6718