Summary: | Abstract Background As part of ongoing co-surveillance of intestinal schistosomiasis and malaria in Ugandan school children, a non-invasive detection method for amplification of Plasmodium DNA using real-time (rt)PCR analysis of ethanol preserved faeces (EPF) was assessed. For diagnostic tabulations, results were compared to rtPCR analysis of dried blood spots (DBS) and field-based point-of-care (POC) rapid diagnostic tests (RDTs). Methods A total of 247 school children from 5 primary schools along the shoreline of Lake Albert were examined with matched EPF and DBS obtained. Mean prevalence and prevalence by school was calculated by detection of Plasmodium DNA by rtPCR using a 18S rDNA Taqman® probe. Diagnostic sensitivity, specificity, positive and negative predictive values were tabulated and compared against RDTs. Results By rtPCR of EPF and DBS, 158 (63.9%; 95% CI 57.8–69.7) and 198 (80.1%, 95% CI 74.7–84.6) children were positive for Plasmodium spp. By RDT, 138 (55.8%; 95% CI 49.6–61.9) and 45 (18.2%; 95% CI 13.9–23.5) children were positive for Plasmodium falciparum, and with non-P. falciparum co-infections, respectively. Using RDT results as a convenient field-based reference, the sensitivity of rtPCR of EPF and DBS was 73.1% (95% CI 65.2–79.8) and 94.2% (95% CI 88.9–97.0) while specificity was 47.7% (95% CI 38.5–57.0) and 37.6% (95% CI 29.0–46.9), respectively. With one exception, school prevalence estimated by analysis of EPF was higher than that by RDT. Positive and negative predictive values were compared and discussed. Conclusions In this high transmission setting, EPF sampling with rtPCR analysis has satisfactory diagnostic performance in estimation of mean prevalence and prevalence by school upon direct comparison with POC-RDTs. Although analysis of EPF was judged inferior to that of DBS, it permits an alternative non-invasive sampling regime that could be implemented alongside general monitoring and surveillance for other faecal parasites. EPF analysis may also have future value in passive surveillance of low transmission settings.
|