Hybrid CHP/Geothermal Borehole System for Multi-Family Building in Heating Dominated Climates

A conventional ground-coupled heat pump (GCHP) can be used to supplement heat rejection or extraction, creating a hybrid system that is cost-effective for certainly unbalanced climes. This research explores the possibility for a hybrid GCHP to use excess heat from a combined heat power (CHP) unit of...

Full description

Bibliographic Details
Main Authors: Saeed Alqaed, Jawed Mustafa, Kevin P. Hallinan, Rodwan Elhashmi
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/18/7772
Description
Summary:A conventional ground-coupled heat pump (GCHP) can be used to supplement heat rejection or extraction, creating a hybrid system that is cost-effective for certainly unbalanced climes. This research explores the possibility for a hybrid GCHP to use excess heat from a combined heat power (CHP) unit of natural gas in a heating-dominated environment for smart cities. A design for a multi-family residential building is considered, with a CHP sized to meet the average electrical load of the building. The constant electric output of the CHP is used directly, stored for later use in a battery, or sold back to the grid. Part of the thermal output provides the building with hot water, and the rest is channeled into the GCHP borehole array to support the building’s large heating needs. Consumption and weather data are used to predict hourly loads over a year for a specific multi-family residence. Simulations of the energies exchanged between system components are performed, and a cost model is minimized over CHP size, battery storage capacity, number of boreholes, and depth of the borehole. Results indicate a greater cost advantage for the design in a severely heated (Canada) climate than in a moderately imbalanced (Ohio) climate.
ISSN:2071-1050