Summary: | One of the recent methods to improve the performance of horizontal axis wind turbine is to attach a winglet at the tip of the blade of these turbines. Winglets reduce the effect of vortex flow at the blade tip and thus improve the performance of the blade. This article presents a parametric study using the computational fluid dynamics (CFD) modeling to investigate the capability of a winglet to increase the turbine power of swept blades as well as straight blades of a horizontal axis wind turbine. The effects of winglet direction, cant angle, and twist angle are studied for two winglet orientations: upstream and downstream directions. The numerical simulation was performed using ANSYS Fluent computational fluid dynamics code. A three-dimensional computational domain, cylindrical rotationally periodic, was used in the computations. The k-ω shear-stress transport turbulence model was adopted to demonstrate turbulence in the flow. Results show that horizontal axis wind turbine with winglet and sweep could enhance more power compared to their equivalent straight or swept blade. The best improvement in the coefficient of power is 4.39% at design tip speed ratio. This is achieved for downstream swept blades with winglets pointing in the upstream direction and having cant and twist angles of 40° and 10°, respectively.
|