Blocking sets of small size and colouring in finite affine planes
Let<em> (S, L) </em>be an either linear or semilinear space and<em> X ⊂ S</em>. Starting from <em>X</em> we define three types of colourings of the points of <em>S</em>. We characterize the Steiner systems<em> S(2, k, ν)</em> which have a c...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
1997-11-01
|
Series: | Le Matematiche |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/420 |
id |
doaj-f9c2f89a5d9b4cf4a4e5ba7ebac21357 |
---|---|
record_format |
Article |
spelling |
doaj-f9c2f89a5d9b4cf4a4e5ba7ebac213572020-11-25T03:09:19ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981997-11-01522417429392Blocking sets of small size and colouring in finite affine planesSandro RajolaMaria Scafati TalliniLet<em> (S, L) </em>be an either linear or semilinear space and<em> X ⊂ S</em>. Starting from <em>X</em> we define three types of colourings of the points of <em>S</em>. We characterize the Steiner systems<em> S(2, k, ν)</em> which have a colouring of the first type with <em>X = {P}</em>. By means of such colourings we construct blocking sets of small size in affine planes of order <em>q</em>. In particular, from the second and third type of colourings we get blocking sets<em> B</em> with<em> |B| ≤ 2q − 2.</em><br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/420 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sandro Rajola Maria Scafati Tallini |
spellingShingle |
Sandro Rajola Maria Scafati Tallini Blocking sets of small size and colouring in finite affine planes Le Matematiche |
author_facet |
Sandro Rajola Maria Scafati Tallini |
author_sort |
Sandro Rajola |
title |
Blocking sets of small size and colouring in finite affine planes |
title_short |
Blocking sets of small size and colouring in finite affine planes |
title_full |
Blocking sets of small size and colouring in finite affine planes |
title_fullStr |
Blocking sets of small size and colouring in finite affine planes |
title_full_unstemmed |
Blocking sets of small size and colouring in finite affine planes |
title_sort |
blocking sets of small size and colouring in finite affine planes |
publisher |
Università degli Studi di Catania |
series |
Le Matematiche |
issn |
0373-3505 2037-5298 |
publishDate |
1997-11-01 |
description |
Let<em> (S, L) </em>be an either linear or semilinear space and<em> X ⊂ S</em>. Starting from <em>X</em> we define three types of colourings of the points of <em>S</em>. We characterize the Steiner systems<em> S(2, k, ν)</em> which have a colouring of the first type with <em>X = {P}</em>. By means of such colourings we construct blocking sets of small size in affine planes of order <em>q</em>. In particular, from the second and third type of colourings we get blocking sets<em> B</em> with<em> |B| ≤ 2q − 2.</em><br /> |
url |
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/420 |
work_keys_str_mv |
AT sandrorajola blockingsetsofsmallsizeandcolouringinfiniteaffineplanes AT mariascafatitallini blockingsetsofsmallsizeandcolouringinfiniteaffineplanes |
_version_ |
1724663317785477120 |