Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait

Phytoplankton in the ocean are extremely diverse. The abundance of various intracellular pigments are often used to study phytoplankton physiology and ecology, and identify and quantify different phytoplankton groups. In this study, phytoplankton absorption spectra (<inline-formula> <math d...

Full description

Bibliographic Details
Main Authors: Yangyang Liu, Emmanuel Boss, Alison Chase, Hongyan Xi, Xiaodong Zhang, Rüdiger Röttgers, Yanqun Pan, Astrid Bracher
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/3/318
id doaj-f9b9e4186c624af8a8c80065fb1e0836
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Yangyang Liu
Emmanuel Boss
Alison Chase
Hongyan Xi
Xiaodong Zhang
Rüdiger Röttgers
Yanqun Pan
Astrid Bracher
spellingShingle Yangyang Liu
Emmanuel Boss
Alison Chase
Hongyan Xi
Xiaodong Zhang
Rüdiger Röttgers
Yanqun Pan
Astrid Bracher
Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait
Remote Sensing
phytoplankton pigments
phytoplankton absorption
underway AC-S flow-through system
Gaussian decomposition
matrix inversion
singular value decomposition
non-negative least squares
author_facet Yangyang Liu
Emmanuel Boss
Alison Chase
Hongyan Xi
Xiaodong Zhang
Rüdiger Röttgers
Yanqun Pan
Astrid Bracher
author_sort Yangyang Liu
title Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait
title_short Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait
title_full Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait
title_fullStr Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait
title_full_unstemmed Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram Strait
title_sort retrieval of phytoplankton pigments from underway spectrophotometry in the fram strait
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2019-02-01
description Phytoplankton in the ocean are extremely diverse. The abundance of various intracellular pigments are often used to study phytoplankton physiology and ecology, and identify and quantify different phytoplankton groups. In this study, phytoplankton absorption spectra (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>) derived from underway flow-through AC-S measurements in the Fram Strait are combined with phytoplankton pigment measurements analyzed by high-performance liquid chromatography (HPLC) to evaluate the retrieval of various pigment concentrations at high spatial resolution. The performances of two approaches, Gaussian decomposition and the matrix inversion technique are investigated and compared. Our study is the first to apply the matrix inversion technique to underway spectrophotometry data. We find that Gaussian decomposition provides good estimates (median absolute percentage error, MPE 21&#8315;34%) of total chlorophyll-a (TChl-a), total chlorophyll-b (TChl-b), the combination of chlorophyll-c1 and -c2 (Chl-c1/2), photoprotective (PPC) and photosynthetic carotenoids (PSC). This method outperformed one of the matrix inversion algorithms, i.e., singular value decomposition combined with non-negative least squares (SVD-NNLS), in retrieving TChl-b, Chl-c1/2, PSC, and PPC. However, SVD-NNLS enables robust retrievals of specific carotenoids (MPE 37&#8315;65%), i.e., fucoxanthin, diadinoxanthin and 19<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </semantics> </math> </inline-formula>-hexanoyloxyfucoxanthin, which is currently not accomplished by Gaussian decomposition. More robust predictions are obtained using the Gaussian decomposition method when the observed <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is normalized by the package effect index at 675 nm. The latter is determined as a function of &#8220;packaged&#8222; <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>675</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and TChl-a concentration, which shows potential for improving pigment retrieval accuracy by the combined use of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and TChl-a concentration data. To generate robust estimation statistics for the matrix inversion technique, we combine leave-one-out cross-validation with data perturbations. We find that both approaches provide useful information on pigment distributions, and hence, phytoplankton community composition indicators, at a spatial resolution much finer than that can be achieved with discrete samples.
topic phytoplankton pigments
phytoplankton absorption
underway AC-S flow-through system
Gaussian decomposition
matrix inversion
singular value decomposition
non-negative least squares
url https://www.mdpi.com/2072-4292/11/3/318
work_keys_str_mv AT yangyangliu retrievalofphytoplanktonpigmentsfromunderwayspectrophotometryintheframstrait
AT emmanuelboss retrievalofphytoplanktonpigmentsfromunderwayspectrophotometryintheframstrait
AT alisonchase retrievalofphytoplanktonpigmentsfromunderwayspectrophotometryintheframstrait
AT hongyanxi retrievalofphytoplanktonpigmentsfromunderwayspectrophotometryintheframstrait
AT xiaodongzhang retrievalofphytoplanktonpigmentsfromunderwayspectrophotometryintheframstrait
AT rudigerrottgers retrievalofphytoplanktonpigmentsfromunderwayspectrophotometryintheframstrait
AT yanqunpan retrievalofphytoplanktonpigmentsfromunderwayspectrophotometryintheframstrait
AT astridbracher retrievalofphytoplanktonpigmentsfromunderwayspectrophotometryintheframstrait
_version_ 1716814805142077440
spelling doaj-f9b9e4186c624af8a8c80065fb1e08362020-11-24T20:45:18ZengMDPI AGRemote Sensing2072-42922019-02-0111331810.3390/rs11030318rs11030318Retrieval of Phytoplankton Pigments from Underway Spectrophotometry in the Fram StraitYangyang Liu0Emmanuel Boss1Alison Chase2Hongyan Xi3Xiaodong Zhang4Rüdiger Röttgers5Yanqun Pan6Astrid Bracher7Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, GermanySchool of Marine Sciences, University of Maine, Orono, ME 04469, USASchool of Marine Sciences, University of Maine, Orono, ME 04469, USAAlfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, GermanyDivision of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USAHelmholtz-Zentrum Geesthacht Center for Materials and Coastal Research, 21502 Geesthacht, GermanyDepartment of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, CanadaAlfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, GermanyPhytoplankton in the ocean are extremely diverse. The abundance of various intracellular pigments are often used to study phytoplankton physiology and ecology, and identify and quantify different phytoplankton groups. In this study, phytoplankton absorption spectra (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>) derived from underway flow-through AC-S measurements in the Fram Strait are combined with phytoplankton pigment measurements analyzed by high-performance liquid chromatography (HPLC) to evaluate the retrieval of various pigment concentrations at high spatial resolution. The performances of two approaches, Gaussian decomposition and the matrix inversion technique are investigated and compared. Our study is the first to apply the matrix inversion technique to underway spectrophotometry data. We find that Gaussian decomposition provides good estimates (median absolute percentage error, MPE 21&#8315;34%) of total chlorophyll-a (TChl-a), total chlorophyll-b (TChl-b), the combination of chlorophyll-c1 and -c2 (Chl-c1/2), photoprotective (PPC) and photosynthetic carotenoids (PSC). This method outperformed one of the matrix inversion algorithms, i.e., singular value decomposition combined with non-negative least squares (SVD-NNLS), in retrieving TChl-b, Chl-c1/2, PSC, and PPC. However, SVD-NNLS enables robust retrievals of specific carotenoids (MPE 37&#8315;65%), i.e., fucoxanthin, diadinoxanthin and 19<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </semantics> </math> </inline-formula>-hexanoyloxyfucoxanthin, which is currently not accomplished by Gaussian decomposition. More robust predictions are obtained using the Gaussian decomposition method when the observed <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is normalized by the package effect index at 675 nm. The latter is determined as a function of &#8220;packaged&#8222; <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>675</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and TChl-a concentration, which shows potential for improving pigment retrieval accuracy by the combined use of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and TChl-a concentration data. To generate robust estimation statistics for the matrix inversion technique, we combine leave-one-out cross-validation with data perturbations. We find that both approaches provide useful information on pigment distributions, and hence, phytoplankton community composition indicators, at a spatial resolution much finer than that can be achieved with discrete samples.https://www.mdpi.com/2072-4292/11/3/318phytoplankton pigmentsphytoplankton absorptionunderway AC-S flow-through systemGaussian decompositionmatrix inversionsingular value decompositionnon-negative least squares