A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application

In the present study, pure chitosan and gelatin solutions are blended at four various ratios with the addition of Fluorohydroxyapatite (FHA). The specimens are fed into the Freeze-Drying (FD) apparatus to produce porous architectures. The X-ray Diffraction (XRD) and the Scanning Electron Microscopy...

Full description

Bibliographic Details
Main Authors: Yuan Cheng, M.R. Morovvati, Menghui Huang, M. Shahali, S. Saber-Samandari, S. Niazi Angili, Mazyar Ghadiri Nejad, M. Shakibaie, Davood Toghraie
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785421007158
id doaj-f9a6a01c24214385b1802be0c068e117
record_format Article
spelling doaj-f9a6a01c24214385b1802be0c068e1172021-09-25T05:07:02ZengElsevierJournal of Materials Research and Technology2238-78542021-09-011417611777A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine applicationYuan Cheng0M.R. Morovvati1Menghui Huang2M. Shahali3S. Saber-Samandari4S. Niazi Angili5Mazyar Ghadiri Nejad6M. Shakibaie7Davood Toghraie8College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China; College of Material and Chemical Engineering, Chuzhou University, Chuzhou, 239000, China; Corresponding author.Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran, IranCollege of Fine Arts and Design, Chuzhou University, Chuzhou, 239000, ChinaDepartment of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Tehran, IranNew Technologies Research Center, Amirkabir University of Technology, Tehran, 15875-4413, IranDepartment of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran, IranIndustrial Engineering Department, Girne American University, Via Mersin 10, TRNC, Kyrenia, TurkeyDepartment of Nanomedicine, School of Medicine, Birjand University of Medical Science, Birjand, IranDepartment of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran; Corresponding author.In the present study, pure chitosan and gelatin solutions are blended at four various ratios with the addition of Fluorohydroxyapatite (FHA). The specimens are fed into the Freeze-Drying (FD) apparatus to produce porous architectures. The X-ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM) are used for analyzing the solutions and finding the best solution regarding the number of beads and droplets, yielded fibers, and morphological uniformity. The flow rate, voltage, and distance from the needle to the collector are variate in the selected specimen for examining the impact processing parameters on fibers morphology and nanofibers diameter. The in-vitro biocompatibility examination is executed with human skin fibroblasts to distinguish the cell proliferation level on the scaffolds. The results obtained by XRD and SEM confirmed that the specimen containing 70% and 30% chitosan and gelatin, respectively, includes the minimum number of beads, droplets, yielded fibers, and the maximum morphological uniformity. Then, the in-vitro biocompatibility tests confirmed high and acceptable biological properties for the specimen. For more details, the experimental tests report that S1 has the maximum displacement value of 207.64 nm, while S4 represents the lowest displacement value of 175.87 nm. Moreover, the numerical study indicated that the scaffold compressive strength increases from 22.8 MPa (S1) to 31.2 MPa (S4) with the addition of 30 wt % FHA nanoparticles. Nanoindentation finite element simulation proved that the indenter penetration decreases from 215.54 nm to 181.46 nm with the addition of 30 wt % FHA nanoparticle. As a consequence, Chitosan-gelatin/FHA/30 wt % FHA (S4), has the best mechanical properties.http://www.sciencedirect.com/science/article/pii/S2238785421007158ChitosanGelatinFreeze-dryingScaffoldBio-nanocompositeSimulation
collection DOAJ
language English
format Article
sources DOAJ
author Yuan Cheng
M.R. Morovvati
Menghui Huang
M. Shahali
S. Saber-Samandari
S. Niazi Angili
Mazyar Ghadiri Nejad
M. Shakibaie
Davood Toghraie
spellingShingle Yuan Cheng
M.R. Morovvati
Menghui Huang
M. Shahali
S. Saber-Samandari
S. Niazi Angili
Mazyar Ghadiri Nejad
M. Shakibaie
Davood Toghraie
A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application
Journal of Materials Research and Technology
Chitosan
Gelatin
Freeze-drying
Scaffold
Bio-nanocomposite
Simulation
author_facet Yuan Cheng
M.R. Morovvati
Menghui Huang
M. Shahali
S. Saber-Samandari
S. Niazi Angili
Mazyar Ghadiri Nejad
M. Shakibaie
Davood Toghraie
author_sort Yuan Cheng
title A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application
title_short A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application
title_full A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application
title_fullStr A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application
title_full_unstemmed A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application
title_sort multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application
publisher Elsevier
series Journal of Materials Research and Technology
issn 2238-7854
publishDate 2021-09-01
description In the present study, pure chitosan and gelatin solutions are blended at four various ratios with the addition of Fluorohydroxyapatite (FHA). The specimens are fed into the Freeze-Drying (FD) apparatus to produce porous architectures. The X-ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM) are used for analyzing the solutions and finding the best solution regarding the number of beads and droplets, yielded fibers, and morphological uniformity. The flow rate, voltage, and distance from the needle to the collector are variate in the selected specimen for examining the impact processing parameters on fibers morphology and nanofibers diameter. The in-vitro biocompatibility examination is executed with human skin fibroblasts to distinguish the cell proliferation level on the scaffolds. The results obtained by XRD and SEM confirmed that the specimen containing 70% and 30% chitosan and gelatin, respectively, includes the minimum number of beads, droplets, yielded fibers, and the maximum morphological uniformity. Then, the in-vitro biocompatibility tests confirmed high and acceptable biological properties for the specimen. For more details, the experimental tests report that S1 has the maximum displacement value of 207.64 nm, while S4 represents the lowest displacement value of 175.87 nm. Moreover, the numerical study indicated that the scaffold compressive strength increases from 22.8 MPa (S1) to 31.2 MPa (S4) with the addition of 30 wt % FHA nanoparticles. Nanoindentation finite element simulation proved that the indenter penetration decreases from 215.54 nm to 181.46 nm with the addition of 30 wt % FHA nanoparticle. As a consequence, Chitosan-gelatin/FHA/30 wt % FHA (S4), has the best mechanical properties.
topic Chitosan
Gelatin
Freeze-drying
Scaffold
Bio-nanocomposite
Simulation
url http://www.sciencedirect.com/science/article/pii/S2238785421007158
work_keys_str_mv AT yuancheng amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT mrmorovvati amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT menghuihuang amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT mshahali amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT ssabersamandari amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT sniaziangili amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT mazyarghadirinejad amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT mshakibaie amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT davoodtoghraie amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT yuancheng multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT mrmorovvati multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT menghuihuang multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT mshahali multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT ssabersamandari multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT sniaziangili multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT mazyarghadirinejad multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT mshakibaie multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
AT davoodtoghraie multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication
_version_ 1717369115396538368