A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application
In the present study, pure chitosan and gelatin solutions are blended at four various ratios with the addition of Fluorohydroxyapatite (FHA). The specimens are fed into the Freeze-Drying (FD) apparatus to produce porous architectures. The X-ray Diffraction (XRD) and the Scanning Electron Microscopy...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-09-01
|
Series: | Journal of Materials Research and Technology |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2238785421007158 |
id |
doaj-f9a6a01c24214385b1802be0c068e117 |
---|---|
record_format |
Article |
spelling |
doaj-f9a6a01c24214385b1802be0c068e1172021-09-25T05:07:02ZengElsevierJournal of Materials Research and Technology2238-78542021-09-011417611777A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine applicationYuan Cheng0M.R. Morovvati1Menghui Huang2M. Shahali3S. Saber-Samandari4S. Niazi Angili5Mazyar Ghadiri Nejad6M. Shakibaie7Davood Toghraie8College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China; College of Material and Chemical Engineering, Chuzhou University, Chuzhou, 239000, China; Corresponding author.Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran, IranCollege of Fine Arts and Design, Chuzhou University, Chuzhou, 239000, ChinaDepartment of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Tehran, IranNew Technologies Research Center, Amirkabir University of Technology, Tehran, 15875-4413, IranDepartment of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran, IranIndustrial Engineering Department, Girne American University, Via Mersin 10, TRNC, Kyrenia, TurkeyDepartment of Nanomedicine, School of Medicine, Birjand University of Medical Science, Birjand, IranDepartment of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran; Corresponding author.In the present study, pure chitosan and gelatin solutions are blended at four various ratios with the addition of Fluorohydroxyapatite (FHA). The specimens are fed into the Freeze-Drying (FD) apparatus to produce porous architectures. The X-ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM) are used for analyzing the solutions and finding the best solution regarding the number of beads and droplets, yielded fibers, and morphological uniformity. The flow rate, voltage, and distance from the needle to the collector are variate in the selected specimen for examining the impact processing parameters on fibers morphology and nanofibers diameter. The in-vitro biocompatibility examination is executed with human skin fibroblasts to distinguish the cell proliferation level on the scaffolds. The results obtained by XRD and SEM confirmed that the specimen containing 70% and 30% chitosan and gelatin, respectively, includes the minimum number of beads, droplets, yielded fibers, and the maximum morphological uniformity. Then, the in-vitro biocompatibility tests confirmed high and acceptable biological properties for the specimen. For more details, the experimental tests report that S1 has the maximum displacement value of 207.64 nm, while S4 represents the lowest displacement value of 175.87 nm. Moreover, the numerical study indicated that the scaffold compressive strength increases from 22.8 MPa (S1) to 31.2 MPa (S4) with the addition of 30 wt % FHA nanoparticles. Nanoindentation finite element simulation proved that the indenter penetration decreases from 215.54 nm to 181.46 nm with the addition of 30 wt % FHA nanoparticle. As a consequence, Chitosan-gelatin/FHA/30 wt % FHA (S4), has the best mechanical properties.http://www.sciencedirect.com/science/article/pii/S2238785421007158ChitosanGelatinFreeze-dryingScaffoldBio-nanocompositeSimulation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yuan Cheng M.R. Morovvati Menghui Huang M. Shahali S. Saber-Samandari S. Niazi Angili Mazyar Ghadiri Nejad M. Shakibaie Davood Toghraie |
spellingShingle |
Yuan Cheng M.R. Morovvati Menghui Huang M. Shahali S. Saber-Samandari S. Niazi Angili Mazyar Ghadiri Nejad M. Shakibaie Davood Toghraie A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application Journal of Materials Research and Technology Chitosan Gelatin Freeze-drying Scaffold Bio-nanocomposite Simulation |
author_facet |
Yuan Cheng M.R. Morovvati Menghui Huang M. Shahali S. Saber-Samandari S. Niazi Angili Mazyar Ghadiri Nejad M. Shakibaie Davood Toghraie |
author_sort |
Yuan Cheng |
title |
A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application |
title_short |
A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application |
title_full |
A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application |
title_fullStr |
A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application |
title_full_unstemmed |
A multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application |
title_sort |
multilayer biomimetic chitosan-gelatin-fluorohydroxyapatite cartilage scaffold using for regenerative medicine application |
publisher |
Elsevier |
series |
Journal of Materials Research and Technology |
issn |
2238-7854 |
publishDate |
2021-09-01 |
description |
In the present study, pure chitosan and gelatin solutions are blended at four various ratios with the addition of Fluorohydroxyapatite (FHA). The specimens are fed into the Freeze-Drying (FD) apparatus to produce porous architectures. The X-ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM) are used for analyzing the solutions and finding the best solution regarding the number of beads and droplets, yielded fibers, and morphological uniformity. The flow rate, voltage, and distance from the needle to the collector are variate in the selected specimen for examining the impact processing parameters on fibers morphology and nanofibers diameter. The in-vitro biocompatibility examination is executed with human skin fibroblasts to distinguish the cell proliferation level on the scaffolds. The results obtained by XRD and SEM confirmed that the specimen containing 70% and 30% chitosan and gelatin, respectively, includes the minimum number of beads, droplets, yielded fibers, and the maximum morphological uniformity. Then, the in-vitro biocompatibility tests confirmed high and acceptable biological properties for the specimen. For more details, the experimental tests report that S1 has the maximum displacement value of 207.64 nm, while S4 represents the lowest displacement value of 175.87 nm. Moreover, the numerical study indicated that the scaffold compressive strength increases from 22.8 MPa (S1) to 31.2 MPa (S4) with the addition of 30 wt % FHA nanoparticles. Nanoindentation finite element simulation proved that the indenter penetration decreases from 215.54 nm to 181.46 nm with the addition of 30 wt % FHA nanoparticle. As a consequence, Chitosan-gelatin/FHA/30 wt % FHA (S4), has the best mechanical properties. |
topic |
Chitosan Gelatin Freeze-drying Scaffold Bio-nanocomposite Simulation |
url |
http://www.sciencedirect.com/science/article/pii/S2238785421007158 |
work_keys_str_mv |
AT yuancheng amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT mrmorovvati amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT menghuihuang amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT mshahali amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT ssabersamandari amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT sniaziangili amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT mazyarghadirinejad amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT mshakibaie amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT davoodtoghraie amultilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT yuancheng multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT mrmorovvati multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT menghuihuang multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT mshahali multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT ssabersamandari multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT sniaziangili multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT mazyarghadirinejad multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT mshakibaie multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication AT davoodtoghraie multilayerbiomimeticchitosangelatinfluorohydroxyapatitecartilagescaffoldusingforregenerativemedicineapplication |
_version_ |
1717369115396538368 |