Summary: | We propose and demonstrate a cascaded hollow-core fiber (HCF) device for multi-parameter sensing based on the combination of antiresonant reflecting guidance (ARRG) and Mach-Zender interference (MZI). The device was fabricated by splicing two sections of HCF together. Two sets of fringes, which have different free spectral ranges, were generated from ARRG and MZI, respectively, and were aliasing in the transmission spectrum. The two sets of fringes were then separated using a band pass filter and a Gaussian fitting technique. The wavelengths at two transmission loss dips formed by ARRG and MZI exhibit a temperature sensitivity of 14.1 and 28.5 pm/°C, and a strain sensitivity of 0.4 and −0.8 pm/με, respectively. By using a crossing matrix with differences sensitivities, the cross-sensitivity between temperature and strain can be solved. The gas pressure response of the cascaded HCF device was also tested up to 300 °C, and linear relationships between the gas pressure sensitivities and temperature were found, which can be used in gas pressure application in various temperatures. Moreover, the proposed cascaded HCF sensor is compact, low cost, and simple for fabrication, and hence offers a promising way for the simultaneous measurement of multiple parameters, such as temperature, strain, and gas pressure.
|